Kotlin implicit override using delegation - kotlin

I have the following base class and interface
open class Base {
open fun foo() { println("Base.foo") }
}
fun interface Delegate {
fun foo(): Unit
}
Now I want to override the foo method of a subclass Composed of Base using delegation, like this:
class Composed(delegate: Delegate) : Base(), Delegate by delegate
This works as I intend. Instances of Composed use the foo method of delegate, instead of the one from Base. But, I get a warning from IntelliJ:
Delegated member 'fun foo(): Unit' hides supertype override: public open fun foo(): Unit defined in Base. Please specify proper override explicitly.
Why do I get this error? What is "bad" about implicitly overriding the foo method? Are there any drawbacks I don't see? Specifying the override explicitly seems like a lot of unnecessary code, especially if I do this for multiple methods and multiple subclasses.

I think there's a warning for at least two reasons:
The behavior is ambiguous about which foo() implementation is used. There's no intuitive expectation about which foo() should win, since the superclass and the delegate are declared on the same line. I've been using Kotlin for a few years, and I couldn't have told you which behavior to expect without testing it, because this is kind of an unusual setup.
You will get possibly unexpected behavior if any of the functions in the Base superclass call foo(), because they will be calling the delegate's foo() instead of their own. It might be OK in this case, but in most cases, when you override a function, you want to call super in case there are necessary side-effects. That's not possible with the delegate.

Related

Kotlin: referring to delegate that is not passed by constructor

I want to use Kotlin delegation in a particular context.
The delegate should not be passed in the constructor.
I want to keep a reference to the delegate for later use in the code. From within the method that I override, say printMessage(), I still need to call the delegate the same way you'd call super.printMessage() in polymorphic inheritance.
I can do the first by simply instantiating an anonymous delegate in the by clause (class Derived() : Base by BaseImpl(42) using Kotlin's documentation example). However,
this prevents me from accessing the anonymous delegate, as there is no way that I know to reference it.
I want to do something similar to the following. The following however doesn't compile with error 'this' is not defined in this context.
class Derived() : Base by this.b {
val b: Base = BaseImpl(42)
override fun printMessage() {
b.printMessage()
print("abc")
}
}
I do need a separate delegate for each instance of my Derived class. So moving b as a global variable is not an option for me.
The closest I got to what I need is with an optional parameter to the constructor. This is not a good option neither, as I don't want to allow the construction of my Derived class with arbitrary delegates.
You can do this using a private primary constructor and a public secondary constructor:
class Derived private constructor(val b: Base) : Base by b {
constructor(): this(BaseImpl(42))
override fun printMessage() {
b.printMessage()
print("abc")
}
}
If you don't need a reference to the delegate, you can also say simply,
class Derived : Base by BaseImpl(42)

What is the benefit of having a private constructor and a use a method inside companion object to instantiate a class?

I've bumped into this code and I'm not sure why would anyone do this. Basically the author decided for making the class constructor private so that it cannot be instantiated outside the file, and added a public method to a companion object in the class that creates a new instance of this class. What is the benefit of this approach?
This is what I found:
class Foo private constructor(private val arg1: Any) {
//more code here..
companion object {
fun newFoo(arg1: Any) = Foo(arg1 = arg1)
}
}
Why is it better than this?
class Foo(private val arg1: Any) {
//more code here..
}
There are several benefits to providing a factory method instead of a public constructor, including:
It can do lots of processing before calling the construstor. (This can be important if the superclass constructor takes parameters that need to be calculated.)
It can return cached values instead of new instances where appropriate.
It can return a subclass. (This allows you to make the top class an interface, as noted in another answer.) The exact class can differ between calls, and can even be an anonymous type.
It can have a name (as noted in another answer). This is especially important if you need multiple methods taking the same parameters. (E.g. a Point object which could be constructed from rectangular or polar co-ordinates.) However, a factory method doesn't need a specific name; if you implement the invoke() method in the companion object, you can call it in exactly the same way as a constructor.
It makes it easier to change the implementation of the class without affecting its public interface.
It also has an important drawback:
It can't be used by subclass constructors.
Factory methods seem to be less used in Kotlin than Java, perhaps due to Kotlin's simpler syntax for primary constructors and properties. But they're still worth considering — especially as Kotlin companion objects can inherit.
For much deeper info, see this article, which looks at the recommendation in Effective Java and how it applies to Kotlin.
If you want to change Foo into an interface in the future the code based on the method will keep working, since you can return a concrete class which still implements Foo, unlike the constructor which no longer exists.
An example specific to android is, that Fragments should be constructed with an empty constructed, and any data you'd like to pass through to them should be put in a bundle.
We can create a static/companion function, which takes in the arguments we need for that fragment, and this method would construct the fragment using the empty constructor and pass in the data using a bundle.
There are many useful cases, for example what Kiskae described. Another good one would be to be able to "give your constructors names":
class Foo<S: Any, T: Any> private constructor(private val a: S, private val b: T) {
//more code here...
companion object {
fun <S: Any> createForPurposeX(a: S) = Foo(a = a, b = "Default value")
fun createForPurposeY() = Foo(a = 1, b = 2)
}
}
Call site:
Foo.createForPurposeX("Hey")
Foo.createForPurposeY()
Note: You should use generic types instead of Any.

override and implement fn from class in interface

I want to override toString() in an interface and have objects that implement that interface to default to using that method (eg: not shadowed)
interface SingletonObjectTrait {
fun toString(): String = this.javaClass.simpleName
}
Is there a straightforward way to define such an interface, preferably with minimal configuration at implementation
object MyEvent: SomeEventLogic(), SomeEventType, SingletonObjectTrait
class SomeEventLogic {}
interface SomeEventType {}
That's not possible, I'm afraid.
Method implementations in interfaces work much like default methods in Java: they're used only if the implementing class doesn't have an implementation already.  But every class already inherits toString() from Any, so the default would never be used.
In fact, the compiler has a specific error for this — if you try to implement toString() in an interface, it says:
An interface may not implement a method of 'Any'
I can't see a good way around this.
As Erik says, one option is to change the interface to an abstract class; but of course that's not viable if any implementations already extend another class.
Another option might be to implement a different method in the interface, and in the comments instruct implementing classes to override toString() and call that method.  Not automatic, but less work for implementers, and less repetition.
There isn't a great way to do this other than using maybe an annotation processor to add the missing override at compile time (by adding an annotation to the interface that you detect and you generate the overrides in the implementation class). This would work, but may be biting off more than you want to, and is likely out of scope of an answer here on Stack Overflow (seek "how to write an annotation processor for Java or Kotlin" and "KAPT" for the one engine that supports Kotlin processors).
Back to your code and why it will not work as-is:
An interface cannot have a method with a signature that matches any of the methods in Any class. And if you try to override one of them you will get a compilation error.
An interface may not implement a method of 'Any'
The minimal code to do something like you want is:
interface SingletonObjectTrait {
fun asString(): String = this.javaClass.simpleName
}
open class SomeEventLogic {}
interface SomeEventType {}
object MyEvent: SomeEventLogic(), SomeEventType, SingletonObjectTrait {
override fun toString(): String = asString() // hope they don't forget to call this!
}
There is no guarantee the implementer will call the trait asString() function but at least you can share the functionality with a one-liner in the implementing class.

'this' is not defined in this context

How can I solve the following case?
interface I
class A(i: I)
class C : I, A(this) // << --- 'this' is not defined in this context
In short, I want to pass the class instance to super class constructor.
Is it possible in Kotlin?
P.S.
All the answers are good and technically correct. But let's give a concrete example:
interface Pilot {
fun informAboutObstacle()
}
abstract class Car(private val pilot: Pilot) {
fun drive() {
while (true) {
// ....
if (haveObstacleDetected()) {
pilot.informAboutObstacle()
}
// ....
}
}
fun break() {
// stop the car
}
}
class AutopilotCar : Pilot, Car(this) { // For example, Tesla :)
override fun informAboutObstacle() {
break() // stop the car
}
}
This example don't look too contrived, and why can't I implement it with OOP-friendly language?
No, this is not possible on the JVM. this is only available after the super class has been initialized.
From
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.10.2.4
The instance initialization method (§2.9.1) for class myClass sees the new uninitialized object as its this argument in local variable 0. Before that method invokes another instance initialization method of myClass or its direct superclass on this, the only operation the method can perform on this is assigning fields declared within myClass.
So the bytecode instruction aload 0 to push this on the stack is forbidden before the super-class constructor is called. That's why it cannot be passed as an argument to the super-constructor.
Kotlin was born as a JVM language and aims for maximum interoperability with Java code and a minimum overhead of its language features. While Kotlin could have chosen to orchestrate object initialization in a different way, it would create problems in mixed Java-Kotlin class hierarchies and add significant overhead.
In the good tradition of OOP languages such as Java, C# or Swift, Kotlin doesn't allow you to leak the this reference before the call to superclass initialization has completed. In your special case you're just storing the reference, but in just a slightly different case the superclass code might try to use the received object, which at that point is still uninitialized.
As a specific example of why languages don't allow this, consider a case where A is a class from a library you use and this rule is not in effect. You pass this like you do and things work fine. Later you update the library to a newer version and it happens to add something as benign as i.toString() to its constructor. It has no idea it's actually calling an overridden method on itself. Your toString() implementation observes all its invariants broken, such as uninitialized vals.
This design suffers from other problems, not just the circular initialization dependency you are struggling with now. In a nutshell, the class A expects this:
But instead you create this:
The class A has a dependency on a collaborator object of type I. It doesn't expect itself as the collaborator. This may bring about all kinds of weird bugs. For example your C.toString() may delegate to super.toString() and A.toString() (A is the super of C) may call into I.toString(), resulting in a StackOverflowError.
I can't say from your question whether A is designed for extension, which would make the C : A part correct, but you should definitely disentangle A from I.

Can extension functions be called in a "static" way?

Is it possible to create an extension function and call it as if it were static?
For Example...
fun System.sayByeAndExit() {
println("Goodbye!")
System.exit()
}
fun main(args: Array<String>) {
System.sayByeAndExit() // I'd like to be able to call this
}
I know that the code sample doesn't work...
I understand that kotlin's extension functions are resolved statically, as mentioned in the Kotlin Reference (Extension Functions), but this does not mean they can be called as if they were static functions within a class (in a Java sense).
I also understand that this code will not work because there is no instance of System to pass into the method that the compiler will generate; therefore it won't compile.
Why would I want this?
Some of you might be wondering why this behaviour is desirable. I can understand why you would think that is isn't, so here are some reasons:
It has all of the benefits that standard extension functions give.
An instance of the class doesn't need to be created just to access the extra functionality.
The functions can be accessed from an application-wide context (provided the class is visible).
To summarise...
Does Kotlin have a way to "hook" a static function onto a class? I'd love to know.
You are really asking for "extension functions for a Class reference" or "adding static methods to existing classes" which was covered by another question here: How can one add static methods to Java classes in Kotlin which is covered by a feature request KT-11968
Extension functions cannot be added to anything that does not have an instance. A reference to a Class is not an instance and therefore you cannot extend something like java.lang.System. You can however extend a companion object of an existing class. For example:
class LibraryThing {
companion object { /* ... */ }
}
Allows you to extend LibraryThing.Companion and therefore calling some new myExtension() method would look like you are extending the Class reference itself, when really you are extending the singleton instance of the companion object:
fun LibraryThing.Companion.myExtension() = "foo"
LibraryThing.Companion.myExtension() // results in "foo"
LibraryThing.myExtension() // results in "foo"
Therefore you might find some Kotlin libraries add empty companion objects just for this case. Others do not, and for those you are "out of luck." Since Java does not have companion objects, you cannot do the same for Java either.
The other commonly requested feature is to take an existing Java static method that accepts an instance of a class as the first parameter, and make it behave as an extension function. This is tracked by issues KT-5261, KT-2844, KT-732, KT-3487 and probably other feature requests.
You can define extension function for an object and use it from system-wide context. An object will be created only once.
object MyClz
fun MyClz.exit() = System.exit(0)
fun main(args: Array<String>) {
MyClz.exit()
}
Or
class MyClz {
companion object
}
fun MyClz.Companion.exit() = System.exit(0)
fun main(args: Array<String>) {
MyClz.exit()
}