I'm having trouble serving a tensorflow object detection model. I trained a model from the tensorflow model repo, and have set up a tensorflow-serving instance. But when I make a request, there's an issue with dimensionality. I'm using the the tolist() method to convert the numpy array of the image into something that the json encoder can use. The tolist() function appears to maintain the structure of the numpy array by having the list recursive inside each other, so I'm not sure where tf-serving is getting a tensor with shape [339450,3]. Do I have to specify the shape of the image when I make the request?
The error:
Data: {"signature_name": "serving_default", "instances": ... 58, 63], [35, 59, 63], [37, 58, 63], [43, 67, 71]]]}
{'error': 'Specified a list with shape [?,?,3] from a tensor with shape [339450,3]\n\t [[{{function_node __inference_call_func_9686}}{{node map/TensorArrayUnstack/TensorListFromTensor}}]]'}
The code to make the request:
import requests
import json
from PIL import Image
import numpy
# Load image
img = Image.open("Hilarious-Car-License-Plates-1.jpg")
img_np = numpy.array(img.getdata())
img_np.resize(tuple([1] + list(img_np.shape)))
data = json.dumps({"signature_name": "serving_default", "instances": img_np.tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/plate_detect:predict', data=data, headers=headers)
response = json.loads(json_response.text)
print(response)
Model metadata:
{
"model_spec":{
"name": "plate_detect",
"signature_name": "",
"version": "1"
}
,
"metadata": {"signature_def": {
"signature_def": {
"serving_default": {
"inputs": {
"input_tensor": {
"dtype": "DT_UINT8",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "-1",
"name": ""
},
{
"size": "-1",
"name": ""
},
{
"size": "3",
"name": ""
}
],
"unknown_rank": false
},
"name": "serving_default_input_tensor:0"
}
},
"outputs": {
"detection_boxes": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "100",
"name": ""
},
{
"size": "4",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:1"
},
"raw_detection_boxes": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "1917",
"name": ""
},
{
"size": "4",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:6"
},
"detection_scores": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "100",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:4"
},
"raw_detection_scores": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "1917",
"name": ""
},
{
"size": "2",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:7"
},
"detection_anchor_indices": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "100",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:0"
},
"detection_multiclass_scores": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "100",
"name": ""
},
{
"size": "2",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:3"
},
"detection_classes": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "100",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:2"
},
"num_detections": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "1",
"name": ""
}
],
"unknown_rank": false
},
"name": "StatefulPartitionedCall:5"
}
},
"method_name": "tensorflow/serving/predict"
},
"__saved_model_init_op": {
"inputs": {},
"outputs": {
"__saved_model_init_op": {
"dtype": "DT_INVALID",
"tensor_shape": {
"dim": [],
"unknown_rank": true
},
"name": "NoOp"
}
},
"method_name": ""
}
}
}
}
}
I managed to fix this by switching to https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2
I saved my model like this:
MODULE_HANDLE = 'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2'
ts = int(time.time())
detector = hub.load(MODULE_HANDLE)
file_path = "./models/object_detector/{}/".format(str(ts))
tf.saved_model.save(detector, file_path)
Related
how can I fetch the name and team_name keys in this API data?
condition: here 18,1,17, etc are subject codes that change according to the subject and not fix this subject available in the next API call.
{
"18": {
"detail": {
"id": "18",
"name": "Hindi"
},
"list": [
{
"id": "5",
"team_name": "Gurpreet",
},
{
"id": "2",
"team_name": "Test1",
}
]
},
"17": {
"detail": {
"id": "17",
"name": "Punjabi"
},
"list": [
{
"id": "6",
"team_name": "Guru",
},
{
"id": "3",
"team_name": "Test",
}
]
},
"1": {
"detail": {
"id": "1",
"name": "History"
},
"list": [
{
"id": "7",
"team_name": "Gurpreet",
}
]
},
"19": {
"detail": {
"id": "19",
"name": "Math"
},
"list": [
{
"id": "4",
"team_name": "Gurpreet",
}
]
},
"status": true
}
Use this code. You can check keys getter to check dynamics key.
import 'dart:convert';
void main() async {
var f = {
"18": {
"detail": {"id": "18", "name": "Hindi"},
"list": [
{
"id": "5",
"team_name": "Gurpreet",
},
{
"id": "2",
"team_name": "Test1",
}
]
},
"17": {
"detail": {"id": "17", "name": "Punjabi"},
"list": [
{
"id": "6",
"team_name": "Guru",
},
{
"id": "3",
"team_name": "Test",
}
]
},
"1": {
"detail": {"id": "1", "name": "History"},
"list": [
{
"id": "7",
"team_name": "Gurpreet",
}
]
},
"19": {
"detail": {"id": "19", "name": "Math"},
"list": [
{
"id": "4",
"team_name": "Gurpreet",
}
]
},
"status": true
};
for (var o in f.keys) {
print(o);
if (f[o] is bool) {
print(f[o]);
} else { // check it is Map. I consider it always is Map
if ((f[o] as Map)['detail'] != null) {
print((f[o] as Map)['detail']['name']);
}
if ((f[o] as Map)['list'] != null) {
print((f[o] as Map)['list'][0]['team_name']); // you can use for here. please check array is not null
}
}
}
}
I have a relatively simple process set up in Azure Data Factory to copy, cleanse and process some log files from a chatbot which has been running fine until I recently started getting the following errorCode:
"errorCode": "InvalidTemplate",
"message": "Unable to process expressions for action 'EvaluatefinaliseTSCRPTS': 'The function 'bool' was invoked with a parameter that is not valid. The value cannot be converted to the target type",
"failureType": "UserError",
"target": "finaliseTSCRPTS",
"details": ""
I can't seem to identify the error in the ADF process despite going through the code for my process below:
"name": "SearchBot dailyTranscripts",
"properties": {
"activities": [
{
"name": "MST Validation",
"type": "Validation",
"dependsOn": [],
"userProperties": [],
"typeProperties": {
"dataset": {
"referenceName": "teamsLogs",
"type": "DatasetReference"
},
"timeout": "0.00:00:30",
"sleep": 10,
"childItems": true
}
},
{
"name": "Get MST-TSCRPTS",
"type": "Copy",
"dependsOn": [
{
"activity": "MST Validation",
"dependencyConditions": [
"Succeeded"
]
}
],
"policy": {
"timeout": "7.00:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false
},
"userProperties": [],
"typeProperties": {
"source": {
"type": "JsonSource",
"storeSettings": {
"type": "AzureBlobStorageReadSettings",
"recursive": true,
"wildcardFileName": "*.json",
"enablePartitionDiscovery": false
}
},
"sink": {
"type": "JsonSink",
"storeSettings": {
"type": "AzureBlobStorageWriteSettings",
"copyBehavior": "MergeFiles"
},
"formatSettings": {
"type": "JsonWriteSettings",
"quoteAllText": true
}
},
"enableStaging": false,
"translator": {
"type": "TabularTranslator",
"mappings": [
{
"source": {
"path": "$['type']"
},
"sink": {
"path": "$['type']"
}
},
{
"source": {
"path": "$['timestamp']"
},
"sink": {
"path": "$['timestamp']"
}
},
{
"source": {
"path": "$['id']"
},
"sink": {
"path": "$['id']"
}
},
{
"source": {
"path": "$['channelId']"
},
"sink": {
"path": "$['channelId']"
}
},
{
"source": {
"path": "$['serviceUrl']"
},
"sink": {
"path": "$['serviceUrl']"
}
},
{
"source": {
"path": "$['from']['id']"
},
"sink": {
"path": "$['from']['id']"
}
},
{
"source": {
"path": "$['from']['aadObjectId']"
},
"sink": {
"path": "$['from']['aadObjectId']"
}
},
{
"source": {
"path": "$['from']['role']"
},
"sink": {
"path": "$['from']['role']"
}
},
{
"source": {
"path": "$['from']['name']"
},
"sink": {
"path": "$['from']['name']"
}
},
{
"source": {
"path": "$['conversation']['conversationType']"
},
"sink": {
"path": "$['conversation']['conversationType']"
}
},
{
"source": {
"path": "$['conversation']['tenantId']"
},
"sink": {
"path": "$['conversation']['tenantId']"
}
},
{
"source": {
"path": "$['conversation']['id']"
},
"sink": {
"path": "$['conversation']['id']"
}
},
{
"source": {
"path": "$['recipient']['id']"
},
"sink": {
"path": "$['recipient']['id']"
}
},
{
"source": {
"path": "$['recipient']['name']"
},
"sink": {
"path": "$['recipient']['name']"
}
},
{
"source": {
"path": "$['recipient']['aadObjectId']"
},
"sink": {
"path": "$['recipient']['aadObjectId']"
}
},
{
"source": {
"path": "$['recipient']['role']"
},
"sink": {
"path": "$['recipient']['role']"
}
},
{
"source": {
"path": "$['channelData']['tenant']['id']"
},
"sink": {
"path": "$['channelData']['tenant']['id']"
}
},
{
"source": {
"path": "$['text']"
},
"sink": {
"path": "$['text']"
}
},
{
"source": {
"path": "$['inputHint']"
},
"sink": {
"path": "$['inputHint']"
}
},
{
"source": {
"path": "$['replyToId']"
},
"sink": {
"path": "$['replyToId']"
}
},
{
"source": {
"path": "$['textFormat']"
},
"sink": {
"path": "$['textFormat']"
}
},
{
"source": {
"path": "$['localTimestamp']"
},
"sink": {
"path": "$['localTimestamp']"
}
},
{
"source": {
"path": "$['locale']"
},
"sink": {
"path": "$['locale']"
}
},
{
"source": {
"path": "$['value']"
},
"sink": {
"path": "$['value']"
}
},
{
"source": {
"path": "$['valueType']"
},
"sink": {
"path": "$['valueType']"
}
},
{
"source": {
"path": "$['name']"
},
"sink": {
"path": "$['name']"
}
},
{
"source": {
"path": "$['label']"
},
"sink": {
"path": "$['label']"
}
}
]
}
},
"inputs": [
{
"referenceName": "teamsLogs",
"type": "DatasetReference"
}
],
"outputs": [
{
"referenceName": "transcriptsStaging",
"type": "DatasetReference"
}
]
},
{
"name": "finaliseTSCRPTS",
"type": "IfCondition",
"dependsOn": [
{
"activity": "MST Validation",
"dependencyConditions": [
"Completed"
]
},
{
"activity": "Get MST-TSCRPTS",
"dependencyConditions": [
"Succeeded",
"Skipped"
]
}
],
"userProperties": [],
"typeProperties": {
"expression": {
"value": "activity('MST Validation').output.exists",
"type": "Expression"
},
"ifTrueActivities": [
{
"name": "Combine TSCRPTS",
"type": "Copy",
"dependsOn": [],
"policy": {
"timeout": "7.00:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false
},
"userProperties": [],
"typeProperties": {
"source": {
"type": "JsonSource",
"storeSettings": {
"type": "AzureBlobStorageReadSettings",
"recursive": true,
"wildcardFileName": "*.json",
"enablePartitionDiscovery": false
}
},
"sink": {
"type": "JsonSink",
"storeSettings": {
"type": "AzureBlobStorageWriteSettings",
"copyBehavior": "MergeFiles"
},
"formatSettings": {
"type": "JsonWriteSettings",
"quoteAllText": true
}
},
"enableStaging": false
},
"inputs": [
{
"referenceName": "transcriptsStaging",
"type": "DatasetReference"
}
],
"outputs": [
{
"referenceName": "SearchBotDailyTranscripts",
"type": "DatasetReference",
"parameters": {
"sourceFileName": "#concat(formatDateTime(utcnow(), 'yyyy-MM-dd'),'.json')"
}
}
]
},
{
"name": "Delete Staging",
"type": "Delete",
"dependsOn": [
{
"activity": "Combine TSCRPTS",
"dependencyConditions": [
"Succeeded"
]
}
],
"policy": {
"timeout": "7.00:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false
},
"userProperties": [],
"typeProperties": {
"dataset": {
"referenceName": "transcriptsStaging",
"type": "DatasetReference"
},
"enableLogging": false,
"storeSettings": {
"type": "AzureBlobStorageReadSettings",
"recursive": true
}
}
},
{
"name": "Get monthlyTSCRPTS",
"type": "Copy",
"dependsOn": [
{
"activity": "Combine TSCRPTS",
"dependencyConditions": [
"Succeeded"
]
}
],
"policy": {
"timeout": "7.00:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false
},
"userProperties": [],
"typeProperties": {
"source": {
"type": "JsonSource",
"storeSettings": {
"type": "AzureBlobStorageReadSettings",
"recursive": true
}
},
"sink": {
"type": "JsonSink",
"storeSettings": {
"type": "AzureBlobStorageWriteSettings"
},
"formatSettings": {
"type": "JsonWriteSettings",
"quoteAllText": true
}
},
"enableStaging": false
},
"inputs": [
{
"referenceName": "SearchBotDailyTranscripts",
"type": "DatasetReference",
"parameters": {
"sourceFileName": "#concat('2019-',formatDateTime(utcnow(), 'MM'),'-??.json')"
}
}
],
"outputs": [
{
"referenceName": "SearchBotMonthlyTranscripts",
"type": "DatasetReference",
"parameters": {
"sourceFileName": "#dataset().sourceFileName"
}
}
]
},
{
"name": "Get yearlyTSCRPTS",
"type": "Copy",
"dependsOn": [
{
"activity": "Get monthlyTSCRPTS",
"dependencyConditions": [
"Succeeded"
]
}
],
"policy": {
"timeout": "7.00:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false
},
"userProperties": [],
"typeProperties": {
"source": {
"type": "JsonSource",
"storeSettings": {
"type": "AzureBlobStorageReadSettings",
"recursive": true
}
},
"sink": {
"type": "JsonSink",
"storeSettings": {
"type": "AzureBlobStorageWriteSettings",
"copyBehavior": "MergeFiles"
},
"formatSettings": {
"type": "JsonWriteSettings",
"quoteAllText": true
}
},
"enableStaging": false
},
"inputs": [
{
"referenceName": "SearchBotMonthlyTranscripts",
"type": "DatasetReference",
"parameters": {
"sourceFileName": {
"value": "#concat(formatDateTime(utcnow(), 'yyyy'),'-??.json')",
"type": "Expression"
}
}
}
],
"outputs": [
{
"referenceName": "SearchBotYearlyTranscripts",
"type": "DatasetReference",
"parameters": {
"sourceFileName": "#dataset().sourceFileName"
}
}
]
},
{
"name": "Copy MST-TSCRPTS",
"type": "Copy",
"dependsOn": [
{
"activity": "Delete Staging",
"dependencyConditions": [
"Succeeded"
]
}
],
"policy": {
"timeout": "0.00:01:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false
},
"userProperties": [],
"typeProperties": {
"source": {
"type": "JsonSource",
"storeSettings": {
"type": "AzureBlobStorageReadSettings",
"recursive": true,
"wildcardFileName": "*.json",
"enablePartitionDiscovery": false
}
},
"sink": {
"type": "JsonSink",
"storeSettings": {
"type": "AzureBlobStorageWriteSettings",
"copyBehavior": "MergeFiles"
},
"formatSettings": {
"type": "JsonWriteSettings",
"quoteAllText": true
}
},
"enableStaging": false
},
"inputs": [
{
"referenceName": "teamsLogs",
"type": "DatasetReference"
}
],
"outputs": [
{
"referenceName": "transcriptsHistory",
"type": "DatasetReference"
}
]
},
{
"name": "Delete MST-TSCRPTS",
"type": "Delete",
"dependsOn": [
{
"activity": "Copy MST-TSCRPTS",
"dependencyConditions": [
"Succeeded",
"Failed"
]
}
],
"policy": {
"timeout": "7.00:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false
},
"userProperties": [],
"typeProperties": {
"dataset": {
"referenceName": "teamsLogs",
"type": "DatasetReference"
},
"enableLogging": false,
"storeSettings": {
"type": "AzureBlobStorageReadSettings",
"recursive": true
}
}
},
{
"name": "run learningList",
"type": "ExecutePipeline",
"dependsOn": [
{
"activity": "Delete MST-TSCRPTS",
"dependencyConditions": [
"Succeeded",
"Failed",
"Skipped"
]
}
],
"userProperties": [],
"typeProperties": {
"pipeline": {
"referenceName": "runLearningList",
"type": "PipelineReference"
},
"waitOnCompletion": true
}
}
]
}
}
],
"parameters": {
"sourceFileName": {
"type": "string",
"defaultValue": "#concat(formatDateTime(utcnow(),'yyyy-MM-dd'),'.json')"
}
},
"annotations": []
},
"type": "Microsoft.DataFactory/factories/pipelines"
There is no expression 'EvaluatefinaliseTSCRPTS' and I can't find a 'bool' function either. The only hint I've found was a previous question here
You have an IF activity named "finaliseTSCRPTS", so "EvaluatefinaliseTSCRPTS" is most likely the internal name of the function that performs the IF condition check. The message seems to indicate that it cannot evaluate your expression "activity('MST Validation').output.exists".
I am trying to do some Twitter-analysis via Twurl and extract some information via jq.
I firstly get some tweets via twurl with the command
twurl /1.1/users/search.json?q=judo
Then i used the following line to structure the outpot with jq:
twurl /1.1/users/search.json?q=judo | jq
i get something like this:
[
{
"id": 173752759,
"id_str": "173752759",
"name": "#JudoWorlds π₯",
"screen_name": "Judo",
"location": "Worldwide",
"description": "The Official Twitter Account of the International Judo Federation π₯",
"url": "https:.....",
"entities": {
"url": {
"urls": [
{
"url": "https://......",
"expanded_url": "https://www.ijf.org/news/show/5-must-see-preliminary-round-clashes-2",
"display_url": "ijf.org/news/show/5-muβ¦",
"indices": [
0,
23
]
}
]
},
"description": {
"urls": []
}
},
"protected": false,
"followers_count": 59854,
"friends_count": 847,
"listed_count": 529,
"created_at": "Mon Aug 02 07:55:15 +0000 2010",
"favourites_count": 7074,
"utc_offset": null,
"time_zone": null,
"geo_enabled": true,
"verified": true,
"statuses_count": 16532,
"lang": null,
"status": {
"created_at": "Fri Aug 30 08:27:10 +0000 2019",
"id": 1167353053282013200,
"id_str": "1167353053282013184",
"text": "#JudoWorlds The Alternative Promo \n\n#NeilAdamsJudo https://.....",
"truncated": false,
"entities": {
"hashtags": [
{
"text": "JudoWorlds",
"indices": [
0,
11
]
}
],
"symbols": [],
"user_mentions": [
{
"screen_name": "NeilAdamsJudo",
"name": "Neil Adams MBE",
"id": 40488733,
"id_str": "40488733",
"indices": [
36,
50
]
}
],
"urls": [],
"media": [
{
"id": 1167352899267002400,
"id_str": "1167352899267002369",
"indices": [
51,
74
],
"media_url": "http://pbs.twimg.com/ext_tw_video_thumb/1167352899267002369/pu/img/6yD1r7uaPV7p3y6a.jpg",
"media_url_https": "https://pbs.twimg.com/ext_tw_video_thumb/1167352899267002369/pu/img/6yD1r7uaPV7p3y6a.jpg",
"url": "https://......",
"display_url": "pic.twitter.com/0RlLbKLkN8",
"expanded_url": "https://twitter.com/Judo/status/1167353053282013184/video/1",
"type": "photo",
"sizes": {
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"medium": {
"w": 1200,
"h": 675,
"resize": "fit"
},
"small": {
"w": 680,
"h": 383,
"resize": "fit"
},
"large": {
"w": 1280,
"h": 720,
"resize": "fit"
}
}
}
]
},
"extended_entities": {
"media": [
{
"id": 1167352899267002400,
"id_str": "1167352899267002369",
"indices": [
51,
74
],
"media_url": "http://pbs.twimg.com/ext_tw_video_thumb/1167352899267002369/pu/img/6yD1r7uaPV7p3y6a.jpg",
"media_url_https": "https://pbs.twimg.com/ext_tw_video_thumb/1167352899267002369/pu/img/6yD1r7uaPV7p3y6a.jpg",
"url": "https://.....",
"display_url": "pic.twitter.com/0RlLbKLkN8",
"expanded_url": "https://twitter.com/Judo/status/1167353053282013184/video/1",
"type": "video",
"sizes": {
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"medium": {
"w": 1200,
"h": 675,
"resize": "fit"
},
"small": {
"w": 680,
"h": 383,
"resize": "fit"
},
"large": {
"w": 1280,
"h": 720,
"resize": "fit"
}
},
"video_info": {
"aspect_ratio": [
16,
9
],
"duration_millis": 48800,
"variants": [
{
"bitrate": 256000,
"content_type": "video/mp4",
"url": "https://video.twimg.com/ext_tw_video/1167352899267002369/pu/vid/480x270/v4nkTg6qs9rpLq8M.mp4?tag=10"
},
{
"content_type": "application/x-mpegURL",
"url": "https://video.twimg.com/ext_tw_video/1167352899267002369/pu/pl/SQN57QxQFYcKWV7l.m3u8?tag=10"
},
{
"bitrate": 2176000,
"content_type": "video/mp4",
"url": "https://video.twimg.com/ext_tw_video/1167352899267002369/pu/vid/1280x720/8cyNocB_8CRjwVCI.mp4?tag=10"
},
{
"bitrate": 832000,
"content_type": "video/mp4",
"url": "https://video.twimg.com/ext_tw_video/1167352899267002369/pu/vid/640x360/uy2U7D_AEmbLdqEK.mp4?tag=10"
}
]
},
"additional_media_info": {
"monetizable": false
}
}
]
},
"source": "Twitter for Android",
"in_reply_to_status_id": null,
"in_reply_to_status_id_str": null,
"in_reply_to_user_id": null,
"in_reply_to_user_id_str": null,
"in_reply_to_screen_name": null,
"geo": null,
"coordinates": null,
"place": null,
"contributors": null,
"is_quote_status": false,
"retweet_count": 4,
"favorite_count": 17,
"favorited": false,
"retweeted": false,
"possibly_sensitive": false,
"lang": "en"
},
"contributors_enabled": false,
"is_translator": false,
"is_translation_enabled": false,
"profile_background_color": "0099CC",
"profile_background_image_url": "http://abs.twimg.com/images/themes/theme1/bg.png",
"profile_background_image_url_https": "https://abs.twimg.com/images/themes/theme1/bg.png",
"profile_background_tile": false,
"profile_image_url": "http://pbs.twimg.com/profile_images/1057928008797970433/O3l2sKj0_normal.jpg",
"profile_image_url_https": "https://pbs.twimg.com/profile_images/1057928008797970433/O3l2sKj0_normal.jpg",
"profile_banner_url": "https://pbs.twimg.com/profile_banners/173752759/1565853008",
"profile_link_color": "0C3C42",
"profile_sidebar_border_color": "8F320A",
"profile_sidebar_fill_color": "F2CF41",
"profile_text_color": "000000",
"profile_use_background_image": true,
"has_extended_profile": false,
"default_profile": false,
"default_profile_image": false,
"following": false,
"follow_request_sent": false,
"notifications": false,
"translator_type": "none"
},
Because i am only interested in certain informations i tried to get the name and the text of the tweet with the following command:
twurl /1.1/users/search.json?q=judo | jq ".[] | { name: .name, text: .text }"
and i get this:
{
"name": "#JudoWorlds π₯",
"text": null
}
{
"name": "#WeAreGBJudo",
"text": null
}
{
"name": "CBJ",
"text": null
}
{
"name": "Santos Futebol Clube",
"text": null
}
{
"name": "Marius Vizer",
"text": null
}
{
"name": "FF Judo",
"text": null
}
{
"name": "Santos FC πΊ πΈ π¬ π§ ",
"text": null
}
{
"name": "USA Judo",
"text": null
}
{
"name": "ε
¨ζ₯ζ¬ζιι£η -γ΄γΈγ©γΈγ£γγ³-",
"text": null
}
{
"name": "Vila Belmiro",
"text": null
}
{
"name": "Deutscher Judo-Bund",
"text": null
}
{
"name": "Bruno Secco",
"text": null
}
{
"name": "Bobby Judo",
"text": null
}
{
"name": "African Judo Union",
"text": null
}
{
"name": "JudoInside.com",
"text": null
}
{
"name": "For competitive judo",
"text": null
}
{
"name": "Judo Canada",
"text": null
}
{
"name": "Neil Adams MBE",
"text": null
}
{
"name": "Sophie Cox",
"text": null
}
{
"name": "Galatasaray Judo",
"text": null
}
Why is this and how can i fix it?
I tried other commands like :
twurl /1.1/search/tweets.json?q=afd | jq ".[] | { name: .name, text: .text }"
but got the error
jq: error (at <stdin>:0): Cannot index array with string "name"
If you need nested 'text' value from 'status' field you should use:
.[] | { name: .name, text: .status.text }
Or shorter version:
.[] | { name, text: .status.text }
I'm trying to get the correct JSON payload to consume via JSON REST a Tensorflow Serve model, that is supped to have as input an array with an array of two float.
Here is the medatata:
{
"model_spec": {
"name": "saved_model.pb",
"signature_name": "",
"version": "3"
},
"metadata": {
"signature_def": {
"signature_def": {
"serving_default": {
"inputs": {
"inputs": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "-1",
"name": ""
},
{
"size": "23",
"name": ""
},
{
"size": "2",
"name": ""
}
],
"unknown_rank": false
},
"name": "lstm_1_input:0"
}
},
"outputs": {
"prediction": {
"dtype": "DT_FLOAT",
"tensor_shape": {
"dim": [
{
"size": "-1",
"name": ""
},
{
"size": "1",
"name": ""
}
],
"unknown_rank": false
},
"name": "dense_1/BiasAdd:0"
}
},
"method_name": "tensorflow/serving/predict"
}
}
}
}
}
I tried many different JSON structures but for the moment nothing likes to Tensorflow Serve.
What is needed to uniquely identify the necessary payload?
How do I add a legend to a basic chart in Vega?
I'm using Vega in the web app where I want all my charts to include a legend even if its a single series.
i.e in Google Sheets it looks like
Since Datum hasn't been implemented yet I added an extra layer as a workaround (This also works for Multi Series Charts by adding additional values into data.values for the rule.)
{
"mark": {
"type": "rule"
},
"data": {
"values": [
{
"color": "Total Units"
}
]
},
"encoding": {
"color": {
"field": "color",
// If you want to update the color of the legend...
"scale": {"range": ["blue", "#000"]},
"sort": false,
"type": "nominal",
"legend": { "title": "" }
}
}
}
Also for those that want to view an example in VegaLite Editor https://vega.github.io/editor/#/
{
"layer": [
{
"mark": "bar",
"data": {
"values": [
{
"goal": 25,
"project": "a",
"score": 25
},
{
"goal": 47,
"project": "b",
"score": 57
},
{
"goal": 30,
"project": "c",
"score": 23
},
{
"goal": 27,
"project": "d",
"score": 19
}
]
},
"encoding": {
"x": {
"type": "nominal",
"field": "project"
},
"y": {
"type": "quantitative",
"field": "score"
}
},
"height": 300,
"width": 400
},
{
"mark": {
"type": "rule"
},
"data": {
"values": [
{
"color": "Goal"
}
]
},
"encoding": {
"color": {
"field": "color",
"sort": false,
"type": "nominal",
"legend": { "title": "" }
}
}
}
]
}