Time complexity of N-Queens problem using Las Vegas algorithm - time-complexity

So, I'm a little confused with how to go about calculating the time complexity of a probabilistic algorithm like Las Vegas used in the N-Queens problem. There is not much information, and I'm reading an old text book called Fundamentals of Algorithmics by Gils Brassard and Paul Bratley, but I don't really understand. Also here is the code I'm trying to get the time complexity code for from GitHub, is not mine btw.

Related

Why differential evolution works so well?

What is the idea behind the mutation in differential evolution and why should this kind of mutation perform well?
I do not see any good geometric reason behind it.
Could anyone point me to some technical explanation of this?
Like all evolutionary algorithms, DE uses a heuristic, so my explanation is going to be a bit hand-wavy. What DE is trying to do, like all evolutionary algorithms, is to do a random search that's not too random. DE's mutation operator first computes the vector between two random members of the population, then adds that vector to a third random member of the population. This works well because it uses the current population as a way of figuring out how large of a step to take, and in what direction. If the population is widely dispersed, then it's reasonable to take big steps; if it's tightly concentrated, then it's reasonable to take small steps.
There are many reasons DE works better than Goldberg's GA, but focusing on the variation operators I'd say that the biggest difference is that DE uses real-coded variables and GA uses binary encoding. When optimizing on a continuous space, binary encoding is not a good choice. This has been known since the early 1990s, and one of the first things to come out of the encounter between the primarily German Evolution Strategy community and the primarily American Genetic Algorithm community was Deb's Simulated Binary Crossover. This operator acts like the GA's crossover operator, but on real-coded variables.

Confusion about NP-hard and NP-Complete in Traveling Salesman problems

Traveling Salesman Optimization(TSP-OPT) is a NP-hard problem and Traveling Salesman Search(TSP) is NP-complete. However, TSP-OPT can be reduced to TSP since if TSP can be solved in polynomial time, then so can TSP-OPT(1). I thought for A to be reduced to B, B has to be as hard if not harder than A. As I can see in the below references, TSP-OPT can be reduced to TSP. TSP-OPT is supposed to be harder than TSP. I am confused...
References: (1)Algorithm, Dasgupta, Papadimitriou, Vazirani Exercise 8.1 http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf https://cseweb.ucsd.edu/classes/sp08/cse101/hw/hw6soln.pdf
http://cs170.org/assets/disc/dis10-sol.pdf
I took a quick look at the references you gave, and I must admit there's one thing I really dislike in your textbook (1st pdf) : they address NP-completeness while barely mentioning decision problems. The provided definition of an NP-complete problem also somewhat deviates from what I'd expect from a textbook. I assume that was a conscious decision to make the introduction more appealing...
I'll provide a short answer, followed by a more detailed explanation about related notions.
Short version
Intuitively (and informally), a problem is in NP if it is easy to verify its solutions.
On the other hand, a problem is NP-hard if it is difficult to solve, or find a solution.
Now, a problem is NP-complete if it is both in NP, and NP-hard. Therefore you have two key, intuitive properties to NP-completeness. Easy to verify, but hard to find solutions.
Although they may seem similar, verifying and finding solutions are two different things. When you use reduction arguments, you're looking at whether you can find a solution. In that regard, both TSP and TSP-OPT are NP-hard, and it is difficult to find their solutions. In fact, the third pdf provides a solution to excercise 8.1 of your textbook, which directly shows that TSP and TSP-OPT are equivalently hard to solve.
Now, one major distinction between TSP and TSP-OPT is that the former is (what your textbook call) a search problem, whereas the latter is an optimization problem. The notion of verifying the solution of a search problem makes sense, and in the case of TSP, it is easy to do, therefore it is NP-complete. For optimization problems, the notion of verifying a solution becomes weird, because I can't think of any way to do that without first computing the size of an optimal solution, which is roughly equivalent to solving the problem itself. Since we do not know an efficient way to verify a solution for TSP-OPT, we cannot say that it is in NP, thus we cannot say that it is NP-complete. (More on this topic in the detailed explanation.)
The tl;dr is that for TSP-OPT, it is both hard to verify and hard to find solutions, while for TSP it is easy to verify and hard to find solutions.
Reductions arguments only help when it comes to finding solutions, so you need other arguments to distinguish them when it comes to verifying solutions.
More details
One thing your textbook is very brief about is what a decision problem is.
Formally, the notion of NP-completeness, NP-hardness, NP, P, etc, were developed in the context of decision problems, and not optimization or search problems.
Here's a quick example of the differences between these different types of problems.
A decision problem is a problem whose answer is either YES or NO.
TSP decision problem
Input: a graph G, a budget b
Output: Does G admit a tour of weight at most b ? (YES/NO)
Here is the search version
TSP search problem
Input: a graph G, a budget b
Output: Find a tour of G of weight at most b, if it exists.
And now the optimization version
TSP optimization problem
Input: a graph G
Output: Find a tour of G with minimum weight.
Out of context, the TSP problem could refer to any of these. What I personally refer to as the TSP is the decision version. Here your textbook use TSP for the search version, and TSP-OPT for the optimization version.
The problem here is that those various problems are strictly distinct. The decision version only ask for existence, while the search version asks for more, it needs one example of such a solution. In practice, we often want to have the actual solution, so more practical approaches may omit to mention decision problems.
Now what about it? The definition of an NP-complete problem was meant for decision problems, so it technically does not apply directly to search or optimization problems. But because the theory behind it is well defined and useful, it is handy to still apply the term NP-complete/NP-hard to search/optimization problem, so that you have an idea of how hard these problems are to solve. So when someone says the travelling salesman problem is NP-complete, formally it should be the decision problem version of the problem.
Obviously, many notions can be extended so that they also cover search problems, and that is how it is presented in your textbook. The differences between decision, search, and optimization, are precisely what the exercises 8.1 and 8.2 try to cover in your textbook. Those exercises are probably meant to get you interested in the relationship between these different types of problems, and how they relate to one another.
Short Version
The decision problem is NP-complete because you can both have a polynomial time verifier for the solution, as well as the fact that the hamiltonian cycle problem is reducible to TSP_DECIDE in polynomial time.
However, the optimization problem is strictly NP-hard, because even though TSP_OPTIMIZE is reducible from the hamiltonian (HAM) cycle problem in polynomial time, you don't have a poly time verifier for a claimed hamiltonian cycle C, whether it is the shortest or not, because you simply have to enumerate all possibilities (which consumes the factorial order space & time).
What the given reference define is, bottleneck TSP
The Bottleneck traveling salesman problem (bottleneck TSP) is a problem in discrete or combinatorial optimization. The problem is to find the Hamiltonian cycle in a weighted graph which minimizes the weight of the most weighty edge of the cycle.
The problem is known to be NP-hard. The decision problem version of this, "for a given length x is there a Hamiltonian cycle in a graph G with no edge longer than x?", is NP-complete. NP-completeness follows immediately by a reduction from the problem of finding a Hamiltonian cycle.
This problem can be solved by performing a binary search or sequential search for the smallest x such that the subgraph of edges of weight at most x has a Hamiltonian cycle. This method leads to solutions whose running time is only a logarithmic factor larger than the time to find a Hamiltonian cycle.
Long Version
The mistake is to say that the TSP is NP complete. Truth is that TSP is NP hard. Let me explain a bit:
The TSP is a problem defined by a set of cities and the distances
between each city pair. The problem is to find a circuit that goes
through each city once and that ends where it starts. This in itself
isn't difficult. What makes the problem interesting is to find the
shortest circuit among all those that are possible.
Solving this problem is quite simple. One merely need to compute the length of all possible circuits, then keep the shortest one. Issue is that the number of such circuits grows very quickly with the number of cities. If there are n cities then this number is factorial of n-1 = (n-1)(n-2)...3.2.
A problem is NP if one can easily (in polynomial time) check that a proposed solution is indeed a solution.
Here is the trick.
In order to check that a proposed tour is a solution of the TSP we need to check two things, namely
That each city is is visited only once
That there is no shorter tour than the one we are checking
We didn't check the second condition! The second condition is what makes the problem difficult to solve. As of today, no one has found a way to check condition 2 in polynomial time. It means that the TSP isn't in NP, as far as we know.
Therefore, TSP isn't NP complete as far as we know. We can only say that TSP is NP hard.
When they write that TSP is NP complete, they mean that the following decision problem (yes/no question) is NP complete:
TSP_DECISION : Given a number L, a set of cities, and distance between all city pairs, is there a tour visiting each city exactly once of length less than L?
This problem is indeed NP complete, as it is easy (polynomial time) to check that a given tour leads to a yes answer to TSPDECISION.

How to choose best parameters with a differential evolution algorithm

for an assignment in class i need to optimize 4 10-dimensional functions, when implementing the differential evolution i noted that all the functions needed different parameter settings. By playing around it seemed that especially when choosing your crossover-rate high and your F around 0.5 seemed to work fine.
However on one function, the 10-dimensional Katsuura function, my differential algorithm seems to fail. I tried a bunch of parameters but keep scoring a 0.01 out of 10. Does differential evolution not work for certain objective functions?
I tried implementing PSO for this problem as well but that failed too so i seem to think this function has certain properties which can only be solved by certain algorithms?
i Inspired my DE on this article:
https://en.wikipedia.org/wiki/Differential_evolution
With kind regards,
Kees Til
If you look at the function you will notice that this function is pretty tough. It is something usual heuristics like DE and PSO to have problems with so tough functions.

Framework of Cart Pole w/ Reinforcement Learning

I am working on a side project that is modelling a the inverted pendulum problem and solving it
with a reinforcement learning algorithm, most notably Q-Learning. I have already engineered a simple MDP solver for a grid world - easy stuff.
However, I am struggling to figure out how to do this after days of scouring research papers. Nothing explains how to build up a framework for representing the problem.
When modelling the problem, can a standard Markov Decision Process be used? Or must it be a POMDP?
What is represented in each state (i.e. what state info is passed to the agent)? The coordinates, velocity, angle of the pendulum etc?
What actions can the agent take? Is it a continuous range of velocities in + or - x direction?
Advice on this is greatly appreciated.
"Reinforcement Learning: An Introduction" by Richard S. Sutton and Andrew G. Barto is the default book on reinforcement learning and they also talk about the cart pole problem (http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html). Sutton also offers the C code of the cart pole problem: http://webdocs.cs.ualberta.ca/~sutton/book/code/pole.c
Of course there are many implementations of the problem online: https://github.com/stober/cartpole
There are multiple solutions for the problem depending on hard you want to have it.
You can model it as a MDP or an POMDP.
The state can consist of position, velocity, angle and angle velocity, or any subset of these.
You can discretize the state space, you can use function approximation.
The actions can be simply min and max acceleration (discrete), something in between (discrete or continuous).
Start easy and work your way up to the more difficult problems!

What are the typical use cases of Genetic Programming?

Today I read this blog entry by Roger Alsing about how to paint a replica of the Mona Lisa using only 50 semi transparent polygons.
I'm fascinated with the results for that particular case, so I was wondering (and this is my question): how does genetic programming work and what other problems could be solved by genetic programming?
There is some debate as to whether Roger's Mona Lisa program is Genetic Programming at all. It seems to be closer to a (1 + 1) Evolution Strategy. Both techniques are examples of the broader field of Evolutionary Computation, which also includes Genetic Algorithms.
Genetic Programming (GP) is the process of evolving computer programs (usually in the form of trees - often Lisp programs). If you are asking specifically about GP, John Koza is widely regarded as the leading expert. His website includes lots of links to more information. GP is typically very computationally intensive (for non-trivial problems it often involves a large grid of machines).
If you are asking more generally, evolutionary algorithms (EAs) are typically used to provide good approximate solutions to problems that cannot be solved easily using other techniques (such as NP-hard problems). Many optimisation problems fall into this category. It may be too computationally-intensive to find an exact solution but sometimes a near-optimal solution is sufficient. In these situations evolutionary techniques can be effective. Due to their random nature, evolutionary algorithms are never guaranteed to find an optimal solution for any problem, but they will often find a good solution if one exists.
Evolutionary algorithms can also be used to tackle problems that humans don't really know how to solve. An EA, free of any human preconceptions or biases, can generate surprising solutions that are comparable to, or better than, the best human-generated efforts. It is merely necessary that we can recognise a good solution if it were presented to us, even if we don't know how to create a good solution. In other words, we need to be able to formulate an effective fitness function.
Some Examples
Travelling Salesman
Sudoku
EDIT: The freely-available book, A Field Guide to Genetic Programming, contains examples of where GP has produced human-competitive results.
Interestingly enough, the company behind the dynamic character animation used in games like Grand Theft Auto IV and the latest Star Wars game (The Force Unleashed) used genetic programming to develop movement algorithms. The company's website is here and the videos are very impressive:
http://www.naturalmotion.com/euphoria.htm
I believe they simulated the nervous system of the character, then randomised the connections to some extent. They then combined the 'genes' of the models that walked furthest to create more and more able 'children' in successive generations. Really fascinating simulation work.
I've also seen genetic algorithms used in path finding automata, with food-seeking ants being the classic example.
Genetic algorithms can be used to solve most any optimization problem. However, in a lot of cases, there are better, more direct methods to solve them. It is in the class of meta-programming algorithms, which means that it is able to adapt to pretty much anything you can throw at it, given that you can generate a method of encoding a potential solution, combining/mutating solutions, and deciding which solutions are better than others. GA has an advantage over other meta-programming algorithms in that it can handle local maxima better than a pure hill-climbing algorithm, like simulated annealing.
I used genetic programming in my thesis to simulate evolution of species based on terrain, but that is of course the A-life application of genetic algorithms.
The problems GA are good at are hill-climbing problems. Problem is that normally it's easier to solve most of these problems by hand, unless the factors that define the problem are unknown, in other words you can't achieve that knowledge somehow else, say things related with societies and communities, or in situations where you have a good algorithm but you need to fine tune the parameters, here GA are very useful.
A situation of fine tuning I've done was to fine tune several Othello AI players based on the same algorithms, giving each different play styles, thus making each opponent unique and with its own quirks, then I had them compete to cull out the top 16 AI's that I used in my game. The advantage was they were all very good players of more or less equal skill, so it was interesting for the human opponent because they couldn't guess the AI as easily.
http://en.wikipedia.org/wiki/Genetic_algorithm#Problem_domains
You should ask yourself : "Can I (a priori) define a function to determine how good a particular solution is relative to other solutions?"
In the mona lisa example, you can easily determine if the new painting looks more like the source image than the previous painting, so Genetic Programming can be "easily" applied.
I have some projects using Genetic Algorithms. GA are ideal for optimization problems, when you cannot develop a fully sequential, exact algorithm do solve a problem. For example: what's the best combination of a car characteristcs to make it faster and at the same time more economic?
At the moment I'm developing a simple GA to elaborate playlists. My GA has to find the better combinations of albums/songs that are similar (this similarity will be "calculated" with the help of last.fm) and suggests playlists for me.
There's an emerging field in robotics called Evolutionary Robotics (w:Evolutionary Robotics), which uses genetic algorithms (GA) heavily.
See w:Genetic Algorithm:
Simple generational genetic algorithm pseudocode
Choose initial population
Evaluate the fitness of each individual in the population
Repeat until termination: (time limit or sufficient fitness achieved)
Select best-ranking individuals to reproduce
Breed new generation through crossover and/or mutation (genetic
operations) and give birth to
offspring
Evaluate the individual fitnesses of the offspring
Replace worst ranked part of population with offspring
The key is the reproduction part, which could happen sexually or asexually, using genetic operators Crossover and Mutation.