Kotlin Generic auto conversion to "out" - kotlin

In the below code if we use generic in base and then extend it in a diff interface, kotlin doesn't respect the generic of the base interface.
Why is that so?
In the base I have not used "in" or "out" but still the extended interface by default becomes "out".
interface FeaturedCardAdapterContract {
interface View {
fun onCreate()
}
interface SubPresenter<V : View> {
fun onBind(v: V)
}
}
interface FeaturedTestAdapterContract {
interface View : FeaturedCardAdapterContract.View
interface Presenter : FeaturedCardAdapterContract.SubPresenter<View>
}
fun main() {
val featureImpl1: FeaturedTestAdapterContract.Presenter = object : FeaturedTestAdapterContract.Presenter {
override fun onBind(v: FeaturedTestAdapterContract.View) {
}
}
val featureImpl2: FeaturedTestAdapterContract.Presenter = object : FeaturedTestAdapterContract.Presenter {
override fun onBind(v: FeaturedTestAdapterContract.View) {
}
}
//Works but i won't be able to consume it in onBind bcz kotlin assumed it as "out"
val interfaceArray: Array<FeaturedCardAdapterContract.SubPresenter<out FeaturedCardAdapterContract.View>> = arrayOf(featureImpl1, featureImpl2)
//Dosen't Work-bcz kotlin assumes the type of featureImpl1 is FeaturedCardAdapterContract.SubPresenter<out FeaturedCardAdapterContract.View> ,Why?
val interfaceArray: Array<FeaturedCardAdapterContract.SubPresenter<FeaturedCardAdapterContract.View>> = arrayOf(featureImpl1, featureImpl2)
//Works but,Same as 1st method
val interfaceArray: Array<FeaturedCardAdapterContract.SubPresenter<*>> = arrayOf(featureImpl1, featureImpl2)
for (featureImpl in interfaceArray) {
//Won't work bcz of "out"
featureImpl.onBind(object : FeaturedCardAdapterContract.View {
override fun onCreate() {
//
}
})
}
}

Rename the interfaces to Processor, Animal, and Dog, and you will see why the compiler is correct about the types and what you are trying to do doesn't make sense.
Here's the renaming:
interface Animal // FeaturedCardAdapterContract.View
interface Processor<A: Animal> { // FeaturedCardAdapterContract.SubPresenter<V>
fun process(animal: A) // onBind
}
interface Dog: Animal // FeaturedTestAdapterContract.View
interface DogProcessor: Processor<Dog> // FeaturedTestAdapterContract.Presenter
In main, you are creating an array of 2 DogProcessors:
val processorImpl1 = object: DogProcessor {
override fun process(animal: Dog) {
}
}
val processorImpl2 = object: DogProcessor {
override fun process(animal: Dog) {
}
}
val array = arrayOf(processorImpl1, processorImpl2)
Then you are trying to loop through it and have them each process an animal:
val array = arrayOf(processorImpl1, processorImpl2)
for (processor in array) {
processor.process(object: Animal {
})
}
This is obviously not going to work no matter how you change the type of array. The processors in the array process dogs specifically, not animals in general. You could simply make this work by just giving it dogs instead of animals, or in your case:
val interfaceArray = arrayOf(featureImpl1, featureImpl2)
for (featureImpl in interfaceArray) {
featureImpl.onBind(object : FeaturedTestAdapterContract.View {
override fun onCreate() {
//
}
})
}
Note that the type of the array can be changed to Array<Processor<out Animal>> - an array of processors that only produces animals. This is because a producer of dogs is a kind of producer of animals. See also: PECS. However, since you want to call process (onBind) here, you want the processor to take in, or consume an animal, not produce one. Therefore, Array<Processor<out Animal>> is not what you want.

Just to clarify, you have defined featureImpl1 as FeaturedTestAdapterContract.Presenter, so it's a FeaturedCardAdapterContract.SubPresenter<FeaturedTestAdapterContract.View>.
Note the "Test" view here, not the "Card" one. This is your own definition of Presenter - the View you use in the definition is a shortcut for the test view FeaturedTestAdapterContract.View, NOT the card one FeaturedCardAdapterContract.View:
val featureImpl1: FeaturedTestAdapterContract.Presenter = object : FeaturedTestAdapterContract.Presenter {
// only wants test views here
override fun onBind(v: FeaturedTestAdapterContract.View) {
}
Now check this part:
Won't work bcz of "out"
featureImpl.onBind(object : FeaturedCardAdapterContract.View {
//...
})
Let's forget about out for the moment. You have defined your featureImpl1 so it accepts to bind only to the specific FeaturedTestAdapterContract.View. But here you're trying to pass a card view FeaturedCardAdapterContract.View, which is NOT a test view. If this were allowed, the body of featureImpl1 would just fail because it is given objects that are NOT of type FeaturedTestAdapterContract.View, nor even subtypes of it.
//Works but i won't be able to consume it in onBind bcz kotlin assumed it as "out"
val interfaceArray: Array<FeaturedCardAdapterContract.SubPresenter<out FeaturedCardAdapterContract.View>> = arrayOf(featureImpl1, featureImpl2)
Kotlin didn't assume anything here, you're marking out yourself. But it's normal that you have to write it because of what I explained above.
We've just seen that featureImpl1 is a SubPresenter<FeaturedTestAdapterContract.View>. It cannot be assigned to a SubPresenter<FeaturedCardAdapterContract.View> (without out) because that would mean it would need to accept more types than it actually can.

Related

Kotlin context receivers cannot resolve members of generic type

In the following code, the call member of Animal cannot be resolved even though Cat is specified as context receiver and it has a member named call.
interface Animal { val call: String }
object Cat : Animal { override val call: String = "Meow" }
object Dog : Animal { override val call: String = "Woof" }
fun <T : Animal> acquireAnimal(animal: T, block: context(T) () -> Unit) {
block(animal)
}
fun main() {
acquireAnimal(Cat) {
call
}
}
When I type this inside the lambda, then the IDE seems to suggest that the type of this is Any?.
If I do the same with a function without a generic context receiver, then it seems to get the type right.
Is this a limitation that is by design or is this a bug?
The fact that you cannot access call was a bug, which was fixed in Kotlin 1.7.20.
A workaround for lower versions is:
sealed interface TypeWrapper<out A> {
object IMPL: TypeWrapper<Nothing>
}
fun <T: Animal> acquireAnimal(animal: T, block: context(T) (TypeWrapper<T>) -> Unit) {
block(animal, TypeWrapper.IMPL)
}
fun main() {
acquireAnimal(Cat) {
val x = call // works!
}
}
However, the fact that this doesn't work is intended. Context receivers do not change the meaning of this. Since you are in a global function, this does not mean anything, and the existence of a context receiver does not change that.
Normally, to access the context receiver itself, you need to do a qualified this by appending the generated label for the context receiver:
context(Foo)
fun foo() {
val x = this#Foo
}
However, your context receiver is a type parameter, so according to the rules here, I don't think a label is generated for the context receiver.

Kotlin type inference on "supposedly" right types

I am new to Kotlin and I was playing with it. I pretty much wanted to create a pretty basic event bus. So I came up with this
interface Event
interface EventListener<E : Event> {
fun handle(event: E)
}
interface EventBus {
fun <E : Event> registerListener(aClass: Class<E>, eventListener: EventListener<E>)
}
class MyBus() : EventBus {
private val eventListeners: MutableMap<String, MutableList<EventListener<out Event>>> = mutableMapOf()
constructor(listeners: List<Pair<Class<Event>, EventListener<Event>>>) : this() {
listeners.forEach {
registerListener(it.first, it.second)
}
}
override fun <E : Event> registerListener(aClass: Class<E>, eventListener: EventListener<E>) {
val key = aClass.name
val listeners: MutableList<EventListener<out Event>> = eventListeners.getOrPut(key) { mutableListOf() }
listeners.add(eventListener)
}
}
val bus = MyBus(
listOf(
MyEvent::class.java to MyEventListener()
)
)
class MyEvent : Event
class AnotherEvent : Event
class MyEventListener : EventListener<MyEvent> {
override fun handle(event: MyEvent) {
}
}
what happens is that when I try to create MyBus using the constructor accepting the list of pairs, I get
Type inference failed. Expected type mismatch: inferred type is List<Pair<Class<MyEvent>,MyEventListener>> but List<Pair<Class<Event>,EventListener<Event>>> was expected
But if I change the constructor to be something like
constructor(listeners: List<Pair<Class<out Event>, EventListener<out Event>>>) : this() {
listeners.forEach {
registerListener(it.first, it.second)
}
}
adding out pretty much everywhere, then the MyBus constructor works, but the invocation to registerListener(..) breaks for the same exact reason as before. So the only way to solve this is to add "out"s also on registerListener function.
I suspect I'm doing something wrong here, but I don't know what precisely. Any help?
If you want your EventListener to be able to consume Events, then its type has to be invariant or covariant (not declared out). If it let you pass your EventListener<MyEvent> as if it were an EventListener<Event>, then your MyBus class might call listener.handle(event) on it with some Event that is not a MyEvent, such as AnotherEvent. Then you will get a ClassCastException when it tries to cast this AnotherEvent to MyEvent.
To be able to store different types of invariant EventHandlers, you will have to remove the variance restrictions by using star projection, and cast them when you retrieve them from the map. So make the map keys into class objects instead of just Strings. Since you will not have the help of the compiler when working with the star-projected types, you need to be careful that you are only adding an item to your MutableMap that is of the same type as the Class key that's associated with it. Then when you retrieve items, only cast to an invariant type.
The other part of your issue is that your constructor needs a generic type. Right now it works exclusively with Event so it can't handle subtypes of Event. Kotlin doesn't (yet?) support generic types for constructors so you have to do this with a factory function.
Here's an example of all the above.
class MyBus() : EventBus {
private val eventListeners: MutableMap<Class<*>, MutableList<EventListener<*>>> = mutableMapOf()
override fun <E : Event> registerListener(aClass: Class<E>, eventListener: EventListener<E>) {
val listeners = retrieveListeners(aClass)
listeners.add(eventListener)
}
private fun <E: Event> retrieveListeners(aClass: Class<E>): MutableList<EventListener<E>> {
#Suppress("UNCHECKED_CAST")
return eventListeners.getOrPut(aClass) { mutableListOf() } as MutableList<EventListener<E>>
}
}
// Factory function
fun <E : Event> myBusOf(listeners: List<Pair<Class<E>, EventListener<E>>>): MyBus {
return MyBus().apply {
listeners.forEach {
registerListener(it.first, it.second)
}
}
}
And you might want to change the type of the factory parameter from a <List>Pair to a vararg Pair so it's easier to use.
Here's a stripped down example to explain the variance limitation.
Your interface for an Event consumer:
interface EventListener<E : Event> {
fun handle(event: E)
}
Two implementations of Event:
class HelloEvent: Event {
fun sayHello() = println("Hello world")
}
class BoringEvent: Event {}
A class implementing the interface:
class HelloEventListener: EventListener<HelloEvent> {
override fun handle(event: HelloEvent) {
event.sayHello()
}
}
Now you have an EventListener that can handle only HelloEvents. Try to treat it like an EventListener<Event>:
val eventListener: EventListener<Event> = HelloEventListener() // COMPILE ERROR!
Imagine the compiler did not prevent you from doing this and you do this:
val eventListener: EventListener<Event> = HelloEventListener()
eventListener.handle(BoringEvent()) // CLASS CAST EXCEPTION AT RUN TIME!
If this were allowed your HelloEventListener would try to call sayHello() on the BoringEvent, which doesn't have that function, so it will crash. This is what generics are here to protect you from.
Now suppose your HelloEventListener.handle() didn't call event.sayHello(). Well, then it could have safely handled a BoringEvent. But the compiler isn't doing that level of analysis for you. It just knows what you declared, that HelloEventListener cannot handle anything except HelloEvent.

Kotlin - extensible type-safe builders

I want to be able to create a custom builder-pattern DSL-type thing, and I want the ability to create new components in a clean and type-safe way. How can I hide the implementation details required for creating and extending such a builder-pattern?
The Kotlin docs give something like the following example:
html {
head {
title {+"XML encoding with Kotlin"}
}
body {
h1 {+"XML encoding with Kotlin"}
p {+"this format can be used as an alternative markup to XML"}
a(href = "http://kotlinlang.org") {+"Kotlin"}
// etc...
}
}
Here, all of the possible "elements" are predefined and implemented as functions that also return objects of the corresponding types. (eg. the html function returns an instance of the HTML class)
Each function is defined so that it adds itself to its parent context's object as a child.
Suppose someone wanted to create a new element type NewElem usable as newelem. They would have to do something cumbersome such as:
class NewElem : Element() {
// ...
}
fun Element.newelem(fn: NewElem.() -> Unit = {}): NewElem {
val e = NewElem()
e.fn()
this.addChild(e)
return e
}
every time.
Is there a clean way to hide this implementation detail?
I want to be able to create a new element by simply extending Element for example.
I do not want to use reflection if possible.
Possibilities I Tried
My main problem is coming up with a clean solution. I thought of a couple other approaches that didn't pan out.
1) Create new elements with a function call that returns a function to be used in the builder style such as:
// Pre-defined
fun createElement(...): (Element.() -> Unit) -> Element
// Created as
val newelem = createElement(...)
// Used as
body {
newelem {
p { +"newelem example" }
}
}
There are obvious downsides to this, and I don't see a clear way to implement it either - probably would involve reflection.
2) Override the invoke operator in companion object
abstract class Element {
companion object {
fun operator invoke(build: Element.() -> Unit): Element {
val e = create()
e.build()
return e
}
abstract fun create(): Element
}
}
// And then you could do
class NewElem : Element() {
companion object {
override fun create(): Element {
return NewElem()
}
}
}
Body {
NewElem {
P { text = "NewElem example" }
}
}
It is unfortunately not possible to enforce "static" functions to be implemented by subclasses in a type-safe way.
Also, companion objects aren't inherited, so the invoke on subclasses wouldn't work anyway.
And we again run into problems about adding children elements to the correct context, so the builder doesn't actually build anything.
3) Override the invoke operator on Element types
abstract class Element {
operator fun invoke(build: Element.() -> Unit): Element {
this.build()
return this
}
}
class NewElem(val color: Int = 0) : Element()
Body() {
NewElem(color = 0xff0000) {
P("NewElem example")
}
}
This might have worked, except for when you immediately try to invoke on the object created by the constructor call, the compiler cannot tell that the lambda is for the "invoke" call and tries to pass it into the constructor.
This can be fixed by making something slightly less clean:
operator fun Element.minus(build: Element.() -> Unit): Element {
this.build()
return this
}
Body() - {
NewElem(color = 0xff0000) - {
P("NewElem example")
}
}
But yet again, adding children elements to the parent elements isn't actually possible without reflection or something similar, so the builder still doesn't actually build anything.
4) Calling add() for sub-elements
To try to fix the issue of the builder not actually building anything, we could implement an add() function for sub-elements.
abstract class Element {
fun add(elem: Element) {
this.children.add(elem)
}
}
Body() - {
add(NewElem(color = 0xff0000) - {
add(P("NewElem red example"))
add(P("NewElem red example 2"))
})
add(NewElem(color = 0x0000ff) - {
add(P("NewElem blue example"))
})
}
But this is obviously not clean and is just deferring the cumbersome-ness to the usage side instead of the implementation side.
I think it's unavoidable to add some sort of a helper function for each Element subclass you create, but their implementation can be simplified with generic helper functions.
For example, you can create a function that performs the setup call and adds the new element to the parent, then you only have to call into this function and create an instance of your new element:
fun <T : Element> Element.nest(elem: T, fn: T.() -> Unit): T {
elem.fn()
this.addChild(elem)
return elem
}
fun Element.newElem(fn: NewElem.() -> Unit = {}): NewElem = nest(NewElem(), fn)
Alternatively, you could create that instance via reflection to simplify even further, but since you've stated you'd like to avoid it, this will probably seem unnecessary:
inline fun <reified T : Element> Element.createAndNest(fn: T.() -> Unit): T {
val elem = T::class.constructors.first().call()
elem.fn()
this.addChild(elem)
return elem
}
fun Element.newElem(fn: NewElem.() -> Unit = {}) = createAndNest(fn)
These still leave you with having to declare a factory function with the appropriate header, but this is the only way to achieve the syntax that the HTML example achieves, where a NewElem can be created with its own newElem function.
I came up with a solution that isn't the most elegant, but it is passable and works the way I would want it to.
It turns out that if you override an operator (or create any extension function for that matter) inside a class, it has access to its parent context.
So I overrode the unary + operator
abstract class Element {
val children: ArrayList<Element> = ArrayList()
// Create lambda to add children
operator fun minus(build: ElementCollector.() -> Unit): Element {
val collector = ElementCollector()
collector.build()
children.addAll(collector.children)
return this
}
}
class ElementCollector {
val children: ArrayList<Element> = ArrayList()
// Add child with unary + prefix
operator fun Element.unaryPlus(): Element {
this#ElementCollector.children.add(this)
return this
}
}
// For consistency
operator fun Element.unaryPlus() = this
This allows me to create new elements and use them like this:
class Body : Element()
class NewElem : Element()
class Text(val t: String) : Element()
fun test() =
+Body() - {
+NewElem()
+NewElem() - {
+Text("text")
+Text("elements test")
+NewElem() - {
+Text("child of child of child")
}
+Text("it works!")
}
+NewElem()
}

How kotlin delegation is useful?

I'm really confused about the kotlin delegation. Let me describe the regular polymorphism approach here which looks same like the kotlin delgation.
interface Base {
fun print()
}
class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }
}
fun main(args: Array<String>) {
val b : Base = BaseImpl(10)
b.print() // prints 10
}
I can pass any implemented class of Base interface to b variable to call the method of specified class's object. Then what is the benefit of kotlin's delegation? Which is described here.
interface Base {
fun print()
}
class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }
}
class Derived(b: Base) : Base by b // why extra line of code?
// if the above example works fine without it.
fun main(args: Array<String>) {
val b = BaseImpl(10)
Derived(b).print() // prints 10
}
I know this is the simple scenario where the both codes are working fine. There should be a benefit of delegation that's why kotlin introduced it. What is the difference? and how kotlin delegation can be useful? Please give me a working example to compare with polymorphism approach.
Also remember that you're not restricted to just one delegate. Kotlin's way of implementing delegation is similar to traits implementation in languages like Groovy. You can compose different functionality via delegates. Kotlin's way can also be considered more powerful because you can "plug in" different implementations too.
interface Marks {
fun printMarks()
}
class StdMarks() : Marks {
override fun printMarks() { println("printed marks") }
}
class CsvMarks() : Marks {
override fun printMarks() { println("printed csv marks") }
}
interface Totals {
fun printTotals()
}
class StdTotals : Totals {
override fun printTotals() { println("calculated and printed totals") }
}
class CheatTotals : Totals {
override fun printTotals() { println("calculated and printed higher totals") }
}
class Student(val studentId: Int, marks: Marks, totals: Totals)
: Marks by marks, Totals by totals
fun main(args:Array<String>) {
val student = Student(1,StdMarks(), StdTotals())
student.printMarks()
student.printTotals()
val cheater = Student(1,CsvMarks(), CheatTotals())
cheater.printMarks()
cheater.printTotals()
}
Output:
printed marks
calculated and printed totals
printed csv marks
calculated and printed higher totals
You can't do this with inheritance.
It is extremely useful for creating decorators and for object composition.
Joshua Bloch in Effective Java, 2nd Edition, Item 16 'Favor Composition Over Inheritance' shows a good example: inheritance is easy-to-break, and decorators are not.
Inheritance:
class LoggingList<E> : ArrayList<E>() {
override fun add(e: E): Boolean {
println("added $e")
return super.add(e)
}
override fun addAll(e: Collection<E>): Boolean {
println("added all: $e")
return super.addAll(e) // oops! Calls [add] internally.
}
}
Delegation:
class LoggingList<E>(delegate: MutableList<E>) : MutableList<E> by delegate {
override fun add(e: E): Boolean {
println("added $e")
return delegate.add(e)
}
override fun addAll(e: Collection<E>): Boolean {
println("added all: $e")
return delegate.addAll(e) // all OK
// it calls [delegate]'s [add] internally, not ours
}
}
It is useful because of the Delegation Pattern where most of the behavior can be the same as the target of the delegation (b) but you just want to override a subset of methods to act differently.
An example would be an InputStream implementation which delegates all work to another InputStream but overrides the close() method to not close the underlying stream. This could be implemented as:
class CloseGuardInputStream(private val base: InputStream)
: InputStream by base {
override fun close() {}
}
Following is the example :-
interface Mode{
val color:String
fun display()
}
class DarkMode(override val color:String) : Mode{
override fun display(){
println("Dark Mode..."+color)
}
}
class LightMode(override val color:String) : Mode {
override fun display() {
println("Light Mode..."+color)
}
}
class MyCustomMode(val mode: Mode): Mode{
override val color:String = mode.color
override fun display() {
mode.display()
}
}
Now, the custom mode can reuse display() function of both modes DarkMode & LightMode
fun main() {
MyCustomMode(DarkMode("CUSTOM_DARK_GRAY")).display()
MyCustomMode(LightMode("CUSTOM_LIGHT_GRAY")).display()
}
/* output:
Dark Mode...CUSTOM_DARK_GRAY
Light Mode...CUSTOM_LIGHT_GRAY
*/
Kotlin natively support delegation pattern.
Kotlin provides by keyword to specify the delegate object which our custom mode will be delegating to.
We can achieve the same result of the code above using by keyword.
class MyCustomMode(val mode: Mode): Mode by mode
fun main() {
MyCustomMode(DarkMode("CUSTOM_DARK_GRAY")).display()
MyCustomMode(LightMode("CUSTOM_LIGHT_GRAY")).display()
}
/* output:
Dark Mode...CUSTOM_DARK_GRAY
Light Mode...CUSTOM_LIGHT_GRAY
*/

How to specify "own type" as return type in Kotlin

Is there a way to specify the return type of a function to be the type of the called object?
e.g.
trait Foo {
fun bar(): <??> /* what to put here? */ {
return this
}
}
class FooClassA : Foo {
fun a() {}
}
class FooClassB : Foo {
fun b() {}
}
// this is the desired effect:
val a = FooClassA().bar() // should be of type FooClassA
a.a() // so this would work
val b = FooClassB().bar() // should be of type FooClassB
b.b() // so this would work
In effect, this would be roughly equivalent to instancetype in Objective-C or Self in Swift.
There's no language feature supporting this, but you can always use recursive generics (which is the pattern many libraries use):
// Define a recursive generic parameter Me
trait Foo<Me: Foo<Me>> {
fun bar(): Me {
// Here we have to cast, because the compiler does not know that Me is the same as this class
return this as Me
}
}
// In subclasses, pass itself to the superclass as an argument:
class FooClassA : Foo<FooClassA> {
fun a() {}
}
class FooClassB : Foo<FooClassB> {
fun b() {}
}
You can return something's own type with extension functions.
interface ExampleInterface
// Everything that implements ExampleInterface will have this method.
fun <T : ExampleInterface> T.doSomething(): T {
return this
}
class ClassA : ExampleInterface {
fun classASpecificMethod() {}
}
class ClassB : ExampleInterface {
fun classBSpecificMethod() {}
}
fun example() {
// doSomething() returns ClassA!
ClassA().doSomething().classASpecificMethod()
// doSomething() returns ClassB!
ClassB().doSomething().classBSpecificMethod()
}
You can use an extension method to achieve the "returns same type" effect. Here's a quick example that shows a base type with multiple type parameters and an extension method that takes a function which operates on an instance of said type:
public abstract class BuilderBase<A, B> {}
public fun <B : BuilderBase<*, *>> B.doIt(): B {
// Do something
return this
}
public class MyBuilder : BuilderBase<Int,String>() {}
public fun demo() {
val b : MyBuilder = MyBuilder().doIt()
}
Since extension methods are resolved statically (at least as of M12), you may need to have the extension delegate the actual implementation to its this should you need type-specific behaviors.
Recursive Type Bound
The pattern you have shown in the question is known as recursive type bound in the JVM world. A recursive type is one that includes a function that uses that type itself as a type for its parameter or its return value. In your example, you are using the same type for the return value by saying return this.
Example
Let's understand this with a simple and real example. We'll replace trait from your example with interface because trait is now deprecated in Kotlin. In this example, the interface VitaminSource returns different implementations of the sources of different vitamins.
In the following interface, you can see that its type parameter has itself as an upper bound. This is why it's known as recursive type bound:
VitaminSource.kt
interface VitaminSource<T: VitaminSource<T>> {
fun getSource(): T {
#Suppress("UNCHECKED_CAST")
return this as T
}
}
We suppress the UNCHECKED_CAST warning because the compiler can't possibly know whether we passed the same class name as a type argument.
Then we extend the interface with concrete implementations:
Carrot.kt
class Carrot : VitaminSource<Carrot> {
fun getVitaminA() = println("Vitamin A")
}
Banana.kt
class Banana : VitaminSource<Banana> {
fun getVitaminB() = println("Vitamin B")
}
While extending the classes, you must make sure to pass the same class to the interface otherwise you'll get ClassCastException at runtime:
class Banana : VitaminSource<Banana> // OK
class Banana : VitaminSource<Carrot> // No compiler error but exception at runtime
Test.kt
fun main() {
val carrot = Carrot().getSource()
carrot.getVitaminA()
val banana = Banana().getSource()
banana.getVitaminB()
}
That's it! Hope that helps.
Depending on the exact use case, scope functions can be a good alternative. For the builder pattern apply seems to be most useful because the context object is this and the result of the scope function is this as well.
Consider this example for a builder of List with a specialized builder subclass:
open class ListBuilder<E> {
// Return type does not matter, could also use Unit and not return anything
// But might be good to avoid that to not force users to use scope functions
fun add(element: E): ListBuilder<E> {
...
return this
}
fun buildList(): List<E> {
...
}
}
class EnhancedListBuilder<E>: ListBuilder<E>() {
fun addTwice(element: E): EnhancedListBuilder<E> {
addNTimes(element, 2)
return this
}
fun addNTimes(element: E, times: Int): EnhancedListBuilder<E> {
repeat(times) {
add(element)
}
return this
}
}
// Usage of builder:
val list = EnhancedListBuilder<String>().apply {
add("a") // Note: This would return only ListBuilder
addTwice("b")
addNTimes("c", 3)
}.buildList()
However, this only works if all methods have this as result. If one of the methods actually creates a new instance, then that instance would be discarded.
This is based on this answer to a similar question.
You can do it also via extension functions.
class Foo
fun <T: Foo>T.someFun(): T {
return this
}
Foo().someFun().someFun()