matplotlib: Controling dimensions in mosaic - matplotlib

I used this code from the documentation to create a mosaic. How do I control the heights of figures individually now?
fig, axs = plt.subplot_mosaic([['a)', 'b)'], ['c)', 'c)']],constrained_layout = True)
for label, ax in axs.items():
# label physical distance to the left and up:
trans = mtransforms.ScaledTranslation(-20/72, 7/72, fig.dpi_scale_trans)
ax.text(0.0, 1.0, label, transform=ax.transAxes + trans,
fontsize='medium', va='bottom', fontfamily='serif')
plt.show()

Related

Utilise a slider to update the position of legend in Matplotlib

I am trying to make a slider that can adjust the x and y coordinates of the legend anchor, but this does not seem to be updating on the plot. I keep getting the message in console "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument", each time the slider value is updated.
Here is the code, taken from this example in the matplotlib docs
from cProfile import label
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
# The parametrized function to be plotted
def f(t, amplitude, frequency):
return amplitude * np.sin(2 * np.pi * frequency * t)
t = np.linspace(0, 1, 1000)
# Define initial parameters
init_amplitude = 5
init_frequency = 3
# Create the figure and the line that we will manipulate
fig, ax = plt.subplots()
line, = ax.plot(t, f(t, init_amplitude, init_frequency), lw=2, label = "wave")
ax.set_xlabel('Time [s]')
# adjust the main plot to make room for the sliders
fig.subplots_adjust(left=0.25, bottom=0.25)
initx = 0.4
inity = 0.2
def l(x,y):
return (x,y)
legend = fig.legend(title = 'title', prop={'size': 8}, bbox_to_anchor = l(initx,inity))
legend.remove( )
# Make a horizontal slider to control the frequency.
axfreq = fig.add_axes([0.25, 0.1, 0.3, 0.3])
freq_slider = Slider(
ax=axfreq,
label='Frequency [Hz]',
valmin=0.1,
valmax=30,
valinit=init_frequency,
)
# Make a vertically oriented slider to control the amplitude
axamp = fig.add_axes([0.1, 0.25, 0.0225, 0.63])
amp_slider = Slider(
ax=axamp,
label="Amplitude",
valmin=0,
valmax=10,
valinit=init_amplitude,
orientation="vertical"
)
# The function to be called anytime a slider's value changes
def update(val):
legend = plt.legend(title = '$J_{xx}$', prop={'size': 8}, bbox_to_anchor= l(amp_slider.val, freq_slider.val))
legend.remove()
#line.set_ydata(f(t, amp_slider.val, freq_slider.val))
fig.canvas.draw_idle()
# register the update function with each slider
freq_slider.on_changed(update)
amp_slider.on_changed(update)
# Create a `matplotlib.widgets.Button` to reset the sliders to initial values.
resetax = fig.add_axes([0.8, 0.025, 0.1, 0.04])
button = Button(resetax, 'Reset', hovercolor='0.975')
def reset(event):
freq_slider.reset()
amp_slider.reset()
button.on_clicked(reset)
plt.show()
Is it even possible to update other matplotlib plot parameters like xticks/yticks or xlim/ylim with a slider, rather than the actual plotted data? I am asking so that I can speed up the graphing process, as I tend to lose a lot of time just getting the right plot parameters whilst making plots presentable, and would like to automate this in some way.

How can I get rid of this dummy mappable object and still draw my colorbar in Matplotlib?

I have the code below to plot circles add them to an ax.
I color the circles with respect to a colorbar.
However, to add the colorbar to my plot, I'm using sc=plot.scatter(...) and putting the colorbar using this dummy sc. Because plt.colorbar(sc,...) requires a mappable argument. How can I get rid of this dummy sc and still draw my colorbar?
import matplotlib
import numpy as np
import os
import matplotlib as mpl
from matplotlib.colors import Normalize
import matplotlib.cm as matplotlib_cm
from matplotlib import pyplot as plt
print(matplotlib.__version__)
row_list=['row1', 'row2', 'row3']
column_list=[2]
maxProcessiveGroupLength=2
index = column_list.index(maxProcessiveGroupLength)
plot1,panel1 = plt.subplots(figsize=(20+1.5*len(column_list), 10+1.5*len(row_list)))
plt.rc('axes', edgecolor='lightgray')
#make aspect ratio square
panel1.set_aspect(1.0)
panel1.text(0.1, 1.2, 'DEBUG', horizontalalignment='center', verticalalignment='top', fontsize=60, fontweight='bold', fontname='Arial',transform=panel1.transAxes)
if (len(column_list) > 1):
panel1.set_xlim([1, index + 1])
panel1.set_xticks(np.arange(0, index + 2, 1))
else:
panel1.set_xlim([0, len(column_list)])
panel1.set_xticks(np.arange(0, len(column_list)+1, 1))
if (len(row_list) > 1):
panel1.set_ylim([1, len(row_list)])
else:
panel1.set_ylim([0, len(row_list)])
panel1.set_yticks(np.arange(0, len(row_list) + 1, 1))
panel1.set_facecolor('white')
panel1.grid(color='black')
for edge, spine in panel1.spines.items():
spine.set_visible(True)
spine.set_color('black')
xlabels = None
if (index is not None):
xlabels = column_list[0:index + 1]
ylabels = row_list
cmap = matplotlib_cm.get_cmap('Blues') # Looks better
v_min = 2
v_max = 20
norm = Normalize(v_min, v_max)
bounds = np.arange(v_min, v_max+1, 2)
# Plot the circles with color
for row_index, row in enumerate(row_list):
for column_index, processive_group_length in enumerate(column_list):
radius=0.35
color=10+column_index*3+row_index*3
circle = plt.Circle((column_index + 0.5, row_index + 0.5), radius,color=cmap(norm(color)), fill=True)
panel1.add_patch(circle)
# Used for scatter plot
x = []
y = []
c = []
for row_index, processiveGroupLength in enumerate(row_list):
x.append(row_index)
y.append(row_index)
c.append(0.5)
# This code defines the ticks on the color bar
# plot the scatter plot
sc = plt.scatter(x, y, s=0, c=c, cmap=cmap, vmin=v_min, vmax=v_max, edgecolors='black')
# colorbar to the bottom
cb = plt.colorbar(sc ,orientation='horizontal') # this works because of the scatter
cb.ax.set_xlabel("colorbar label", fontsize=50, labelpad=25)
# common for horizontal colorbar and vertical colorbar
cbax = cb.ax
cbax.tick_params(labelsize=40)
text_x = cbax.xaxis.label
text_y = cbax.yaxis.label
font = mpl.font_manager.FontProperties(size=40)
text_x.set_font_properties(font)
text_y.set_font_properties(font)
# CODE GOES HERE TO CENTER X-AXIS LABELS...
panel1.set_xticklabels([])
mticks = panel1.get_xticks()
panel1.set_xticks((mticks[:-1] + mticks[1:]) / 2, minor=True)
panel1.tick_params(axis='x', which='minor', length=0, labelsize=50)
if xlabels is not None:
panel1.set_xticklabels(xlabels,minor=True)
panel1.xaxis.set_ticks_position('top')
plt.tick_params(
axis='x', # changes apply to the x-axis
which='major', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False) # labels along the bottom edge are off
# CODE GOES HERE TO CENTER Y-AXIS LABELS...
panel1.set_yticklabels([])
mticks = panel1.get_yticks()
panel1.set_yticks((mticks[:-1] + mticks[1:]) / 2, minor=True)
panel1.tick_params(axis='y', which='minor', length=0, labelsize=50)
panel1.set_yticklabels(ylabels, minor=True) # fontsize
plt.tick_params(
axis='y', # changes apply to the x-axis
which='major', # both major and minor ticks are affected
left=False) # labels along the bottom edge are off
plt.show()
From the documentation of colorbar:
Note that one can create a ScalarMappable "on-the-fly" to generate
colorbars not attached to a previously drawn artist
In your example, the following allows for creating the same colorbar without the scatter plot:
cb = plt.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), orientation='horizontal')

how to add variable error bars to scatter plot points with shared axes in python matplotlib

I have generated a plot that shows a topographic profile with points along the profile that represent dated points. However, these dated points also have symmetric uncertainty values/error bars (that typically vary for each point).
In this example, I treat non-dated locations as 'np.nan'. I would like to add uncertainty values to the y2 axis (Mean Age) with defined uncertainty values as y2err.
Everytime I use the ax2.errorbar( ... ) line, my graph is squeezed and distorted.
import numpy as np
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
#Longitude = x; Elevation = y
x = (-110.75696,-110.75668,-110.75640,-110.75612,-110.75584,-110.75556,-110.75528)
y = (877,879,878,873,871,872,872)
ax1.plot(x, y)
ax1.set_xlabel('Longitude')
# Make the y-axis label, ticks and tick labels match the line color.
ax1.set_ylabel('Elevation', color='b')
ax1.tick_params('y', colors='b')
ax2 = ax1.twinx()
# Mean Age, np.nan = 0.0
y2 = (np.nan,20,np.nan,np.nan,np.nan,np.nan,np.nan)
y2err = (np.nan,5,np.nan,np.nan,np.nan,np.nan,np.nan)
ax2.scatter(x, y2, color='r')
#add error bars to scatter plot points
# (??????) ax2.errorbar(x, y, y2, y2err, capsize = 0, color='black')
ax2.set_ylim(10,30)
ax2.set_ylabel('Mean Age', color='r')
ax2.tick_params('y', colors='r')
fig.tight_layout()
plt.show()
If I do not apply the ax2.errorbar... line my plot looks like the first image, which is what I want but with the points showing uncertainty values (+/- equal on both side of point in the y-axis direction).
Plot of Elevation vs Age without error bars
When I use the ax2.errorbar line it looks like the second image:
Plot when using ax2.errorbar line
Thanks!

Creating figure with exact size and no padding (and legend outside the axes)

I am trying to make some figures for a scientific article, so I want my figures to have a specific size. I also see that Matplotlib by default adds a lot of padding on the border of the figures, which I don't need (since the figures will be on a white background anyway).
To set a specific figure size I simply use plt.figure(figsize = [w, h]), and I add the argument tight_layout = {'pad': 0} to remove the padding. This works perfectly, and even works if I add a title, y/x-labels etc. Example:
fig = plt.figure(
figsize = [3,2],
tight_layout = {'pad': 0}
)
ax = fig.add_subplot(111)
plt.title('title')
ax.set_ylabel('y label')
ax.set_xlabel('x label')
plt.savefig('figure01.pdf')
This creates a pdf file with exact size 3x2 (inches).
The issue I have is that when I for example add a text box outside the axis (typically a legend box), Matplotlib does not make room for the text box like it does when adding titles/axis labels. Typically the text box is cut off, or does not show in the saved figure at all. Example:
plt.close('all')
fig = plt.figure(
figsize = [3,2],
tight_layout = {'pad': 0}
)
ax = fig.add_subplot(111)
plt.title('title')
ax.set_ylabel('y label')
ax.set_xlabel('x label')
t = ax.text(0.7, 1.1, 'my text here', bbox = dict(boxstyle = 'round'))
plt.savefig('figure02.pdf')
A solution I found elsewhere on SO was to add the argument bbox_inches = 'tight' to the savefig command. The text box is now included like I wanted, but the pdf is now the wrong size. It seems like Matplotlib just makes the figure bigger, instead of reducing the size of the axes like it does when adding titles and x/y-labels.
Example:
plt.close('all')
fig = plt.figure(
figsize = [3,2],
tight_layout = {'pad': 0}
)
ax = fig.add_subplot(111)
plt.title('title')
ax.set_ylabel('y label')
ax.set_xlabel('x label')
t = ax.text(0.7, 1.1, 'my text here', bbox = dict(boxstyle = 'round'))
plt.savefig('figure03.pdf', bbox_inches = 'tight')
(This figure is 3.307x2.248)
Is there any solution to this that covers most cases with a legend just outside the axes?
So the requirements are:
Having a fixed, predefined figure size
Adding a text label or legend outside the axes
Axes and text cannot overlap
The axes, together with the title and axis labels, sits tightly agains the figure border.
So tight_layout with pad = 0, solves 1. and 4. but contradicts 2.
One could think on setting pad to a larger value. This would solve 2. However, since it's is symmetric in all directions, it would contradict 4.
Using bbox_inches = 'tight' changes the figure size. Contradicts 1.
So I think there is no generic solution to this problem.
Something I can come up with is the following: It sets the text in figure coordinates and then resizes the axes either in horizontal or in vertical direction such that there is no overlap between the axes and the text.
import matplotlib.pyplot as plt
import matplotlib.transforms
fig = plt.figure(figsize = [3,2])
ax = fig.add_subplot(111)
plt.title('title')
ax.set_ylabel('y label')
ax.set_xlabel('x label')
def text_legend(ax, x0, y0, text, direction = "v", padpoints = 3, margin=1.,**kwargs):
ha = kwargs.pop("ha", "right")
va = kwargs.pop("va", "top")
t = ax.figure.text(x0, y0, text, ha=ha, va=va, **kwargs)
otrans = ax.figure.transFigure
plt.tight_layout(pad=0)
ax.figure.canvas.draw()
plt.tight_layout(pad=0)
offs = t._bbox_patch.get_boxstyle().pad * t.get_size() + margin # adding 1pt
trans = otrans + \
matplotlib.transforms.ScaledTranslation(-offs/72.,-offs/72.,fig.dpi_scale_trans)
t.set_transform(trans)
ax.figure.canvas.draw()
ppar = [0,-padpoints/72.] if direction == "v" else [-padpoints/72.,0]
trans2 = matplotlib.transforms.ScaledTranslation(ppar[0],ppar[1],fig.dpi_scale_trans) + \
ax.figure.transFigure.inverted()
tbox = trans2.transform(t._bbox_patch.get_window_extent())
bbox = ax.get_position()
if direction=="v":
ax.set_position([bbox.x0, bbox.y0,bbox.width, tbox[0][1]-bbox.y0])
else:
ax.set_position([bbox.x0, bbox.y0,tbox[0][0]-bbox.x0, bbox.height])
# case 1: place text label at top right corner of figure (1,1). Adjust axes height.
#text_legend(ax, 1,1, 'my text here', bbox = dict(boxstyle = 'round'), )
# case 2: place text left of axes, (1, y), direction=="v"
text_legend(ax, 1., 0.8, 'my text here', margin=2., direction="h", bbox = dict(boxstyle = 'round') )
plt.savefig(__file__+'.pdf')
plt.show()
case 1 (left) and case 2 (right):
Doin the same with a legend is slightly easier, because we can directly use the bbox_to_anchor argument and don't need to control the fancy box around the legend.
import matplotlib.pyplot as plt
import matplotlib.transforms
fig = plt.figure(figsize = [3.5,2])
ax = fig.add_subplot(111)
ax.set_title('title')
ax.set_ylabel('y label')
ax.set_xlabel('x label')
ax.plot([1,2,3], marker="o", label="quantity 1")
ax.plot([2,1.7,1.2], marker="s", label="quantity 2")
def legend(ax, x0=1,y0=1, direction = "v", padpoints = 3,**kwargs):
otrans = ax.figure.transFigure
t = ax.legend(bbox_to_anchor=(x0,y0), loc=1, bbox_transform=otrans,**kwargs)
plt.tight_layout(pad=0)
ax.figure.canvas.draw()
plt.tight_layout(pad=0)
ppar = [0,-padpoints/72.] if direction == "v" else [-padpoints/72.,0]
trans2=matplotlib.transforms.ScaledTranslation(ppar[0],ppar[1],fig.dpi_scale_trans)+\
ax.figure.transFigure.inverted()
tbox = t.get_window_extent().transformed(trans2 )
bbox = ax.get_position()
if direction=="v":
ax.set_position([bbox.x0, bbox.y0,bbox.width, tbox.y0-bbox.y0])
else:
ax.set_position([bbox.x0, bbox.y0,tbox.x0-bbox.x0, bbox.height])
# case 1: place text label at top right corner of figure (1,1). Adjust axes height.
#legend(ax, borderaxespad=0)
# case 2: place text left of axes, (1, y), direction=="h"
legend(ax,y0=0.8, direction="h", borderaxespad=0.2)
plt.savefig(__file__+'.pdf')
plt.show()
Why 72? The 72 is the number of points per inch (ppi). This is a fixed typographic unit e.g. fontsizes are always given in points (like 12pt). Because matplotlib defines the padding of the text box in units relative to fontsize, which is points, we need to use 72 to transform back to inches (and then to display coordinates). The default dots per inch (dpi) is not touched here, but is accounted for in fig.dpi_scale_trans. If you want to change dpi you need to make sure the figure dpi is set when creating the figure as well as when saving it (use dpi=.. in the call to plt.figure() as well as plt.savefig()).
As of matplotlib==3.1.3, you can use constrained_layout=True to achieve the desired result. This is currently experimental, but see the docs for a very helpful guide (and the section specifically on legends). Note that the legend will steal space from the plot, but this is unavoidable. I've found that as long as the legend does not take up too much space relative to the size of the plot, then the figure gets saved without cropping anything.
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(3, 2), constrained_layout=True)
ax.set_title('title')
ax.set_ylabel('y label')
ax.set_xlabel('x label')
ax.plot([0,1], [0,1], label='my text here')
ax.legend(loc='center left', bbox_to_anchor=(1.1, 0.5))
fig.savefig('figure03.pdf')

How to color bars who make up 50% of the data?

I am plotting a histogram for some data points with bar heights being the percentage of that bin from the whole data:
x = normal(size=1000)
hist, bins = np.histogram(x, bins=20)
plt.bar(bins[:-1], hist.astype(np.float32) / hist.sum(), width=(bins[1]-bins[0]), alpha=0.6)
The result is:
I would like all bars that sum up to be 50% of the data to be in a different color, for example:
(I selected the colored bars without actually checking whether their sum adds to 50%)
Any suggestions how to accomplish this?
Here is how you can plot the first half of the bins with a different color, this looks like your mock, but I am not sure it complies to %50 of the data (it is not clear to me what do you mean by that).
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
fig = plt.figure()
ax = fig.add_subplot(111)
# the histogram of the data
n, bins, patches = ax.hist(x, 50, normed=1, facecolor='green', alpha=0.75)
# now that we found the index we color all the beans smaller than middle index
for p in patches[:len(bins)/2]:
p.set_facecolor('red')
# hist uses np.histogram under the hood to create 'n' and 'bins'.
# np.histogram returns the bin edges, so there will be 50 probability
# density values in n, 51 bin edges in bins and 50 patches. To get
# everything lined up, we'll compute the bin centers
bincenters = 0.5*(bins[1:]+bins[:-1])
# add a 'best fit' line for the normal PDF
y = mlab.normpdf( bincenters, mu, sigma)
l = ax.plot(bincenters, y, 'r--', linewidth=1)
ax.set_xlabel('Smarts')
ax.set_ylabel('Probability')
ax.set_xlim(40, 160)
ax.set_ylim(0, 0.03)
ax.grid(True)
plt.show()
And the output is:
update
The key method you want to look at is patch.set_set_facecolor. You have to understand that almost everything you plot inside the axes object is a Patch, and as such it has this method, here is another example, I arbitrary choose the first 3 bars to have another color, you can choose based on what ever you decide:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
## the data
N = 5
menMeans = [18, 35, 30, 35, 27]
## necessary variables
ind = np.arange(N) # the x locations for the groups
width = 0.35 # the width of the bars
## the bars
rects1 = ax.bar(ind, menMeans, width,
color='black',
error_kw=dict(elinewidth=2,ecolor='red'))
for patch in rects1.patches[:3]:
patch.set_facecolor('red')
ax.set_xlim(-width,len(ind)+width)
ax.set_ylim(0,45)
ax.set_ylabel('Scores')
xTickMarks = ['Group'+str(i) for i in range(1,6)]
ax.set_xticks(ind)
xtickNames = ax.set_xticklabels(xTickMarks)
plt.setp(xtickNames, rotation=45, fontsize=10)
plt.show()