Character-level seq2seq model for translation and beam search - tensorflow

I was trying to implement seq2seq translation model at character level along with beam search by referring the tensorflow documentation.
https://www.tensorflow.org/addons/tutorials/networks_seq2seq_nmt
For this, I tried to change parameter, 'char_level = True' in tf.keras tokenizer, but it didn't worked.
def tokenize(self, lang):
# lang = list of sentences in a language
# print(len(lang), "example sentence: {}".format(lang[0]))
lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='', oov_token='<OOV>', char_level = True)
lang_tokenizer.fit_on_texts(lang)
## tf.keras.preprocessing.text.Tokenizer.texts_to_sequences converts string (w1, w2, w3, ......, wn)
## to a list of correspoding integer ids of words (id_w1, id_w2, id_w3, ...., id_wn)
tensor = lang_tokenizer.texts_to_sequences(lang)
## tf.keras.preprocessing.sequence.pad_sequences takes argument a list of integer id sequences
## and pads the sequences to match the longest sequences in the given input
tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, padding='post')
return tensor, lang_tokenizer
Can someone please help me to solve this issue.
Thank you in advance

Related

How can I find the optimal number of topics in LDA with scikit-learn?

I'm computing topic models through scikit-learn with this script (I'm starting with a dataset "df" which has one document per row in the column "Text")
from sklearn.decomposition import LatentDirichletAllocation
#Applying LDA
# the vectorizer object will be used to transform text to vector form
vectorizer = CountVectorizer(max_df=int(0.9*len(df)), min_df=int(0.01*len(df)), token_pattern='\w+|\$[\d\.]+|\S+')
# apply transformation
tf = vectorizer.fit_transform(df.Text).toarray()
# tf_feature_names tells us what word each column in the matric represents
tf_feature_names = vectorizer.get_feature_names()
number_of_topics = 6
model = LatentDirichletAllocation(n_components=number_of_topics, random_state=0)
model.fit(tf)
I'm interested in comparing models with different number of topics (kind of from 2 to 20 topics) through a coherence measure. How can I do it?

How to perform the Text Similarity using BERT on 10M+ corpus? Using LSH/ ANNOY/ fiass or sklearn?

My idea is to extract the CLS token for all the text in the DB and save it in CSV or somewhere else. So when a new text comes in, instead of using the Cosine Similarity/JAccard/MAnhattan/Euclidean or other distances, I have to use some approximation like LSH, ANN (ANNOY, sklearn.neighbor) or the one given here faiss . How can that be done? I have my code as:
PyTorch:
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, I am a text")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
Using Tensorflow:
import tensorflow as tf
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertModel.from_pretrained('bert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
and I think can get the CLS token as: (Please correct if wrong)
last_hidden_states = outputs[0]
cls_embedding = last_hidden_states[0][0]
Please tell me if it's the right way to use and how can I use any of the LSH, ANNOT, faiss or something like that?
So for every text, there'll a 768 length vector and we can create a N(No of texts 10M)x768 matrix, how can I find the Index of top-5 data points (texts) which are most similar to the given image/embedding/data point?

Tensorflow/Keras, How to convert tf.feature_column into input tensors?

I have the following code to average embeddings for list of item-ids.
(Embedding is trained on review_meta_id_input, and used as look up for pirors_input and for getting average embedding)
review_meta_id_input = tf.keras.layers.Input(shape=(1,), dtype='int32', name='review_meta_id')
priors_input = tf.keras.layers.Input(shape=(None,), dtype='int32', name='priors') # array of ids
item_embedding_layer = tf.keras.layers.Embedding(
input_dim=100, # max number
output_dim=self.item_embedding_size,
name='item')
review_meta_id_embedding = item_embedding_layer(review_meta_id_input)
selected = tf.nn.embedding_lookup(review_meta_id_embedding, priors_input)
non_zero_count = tf.cast(tf.math.count_nonzero(priors_input, axis=1), tf.float32)
embedding_sum = tf.reduce_sum(selected, axis=1)
item_average = tf.math.divide(embedding_sum, non_zero_count)
I also have some feature columns such as..
(I just thought feature_column looked cool, but not many documents to look for..)
kid_youngest_month = feature_column.numeric_column("kid_youngest_month")
kid_age_youngest_buckets = feature_column.bucketized_column(kid_youngest_month, boundaries=[12, 24, 36, 72, 96])
I'd like to define [review_meta_id_iput, priors_input, (tensors from feature_columns)] as an input to keras Model.
something like:
inputs = [review_meta_id_input, priors_input] + feature_layer
model = tf.keras.models.Model(inputs=inputs, outputs=o)
In order to get tensors from feature columns, the closest lead I have now is
fc_to_tensor = {fc: input_layer(features, [fc]) for fc in feature_columns}
from https://github.com/tensorflow/tensorflow/issues/17170
However I'm not sure what the features are in the code.
There's no clear example on https://www.tensorflow.org/api_docs/python/tf/feature_column/input_layer either.
How should I construct the features variable for fc_to_tensor ?
Or is there a way to use keras.layers.Input and feature_column at the same time?
Or is there an alternative than tf.feature_column to do the bucketing as above? then I'll just drop the feature_column for now;
The behavior you desire could be achieved through following steps.
This works in TF 2.0.0-beta1, but may being changed or even simplified in further reseases.
Please check out issue in TensorFlow github repository Unable to use FeatureColumn with Keras Functional API #27416. There you will find the more general example and useful comments about tf.feature_column and Keras Functional API.
Meanwhile, based on the code in your question the input tensor for feature_column could be get like this:
# This you have defined feauture column
kid_youngest_month = feature_column.numeric_column("kid_youngest_month")
kid_age_youngest_buckets = feature_column.bucketized_column(kid_youngest_month, boundaries=[12, 24, 36, 72, 96])
# Then define layer
feature_layer = tf.keras.layers.DenseFeatures(kid_age_youngest_buckets)
# The inputs for DenseFeature layer should be define for each original feature column as dictionary, where
# keys - names of feature columns
# values - tf.keras.Input with shape =(1,), name='name_of_feature_column', dtype - actual type of original column
feature_layer_inputs = {}
feature_layer_inputs['kid_youngest_month'] = tf.keras.Input(shape=(1,), name='kid_youngest_month', dtype=tf.int8)
# Then you can collect inputs of other layers and feature_layer_inputs into one list
inputs=[review_meta_id_input, priors_input, [v for v in feature_layer_inputs.values()]]
# Then define outputs of this DenseFeature layer
feature_layer_outputs = feature_layer(feature_layer_inputs)
# And pass them into other layer like any other
x = tf.keras.layers.Dense(256, activation='relu')(feature_layer_outputs)
# Or maybe concatenate them with outputs from your others layers
combined = tf.keras.layers.concatenate([x, feature_layer_outputs])
#And probably you will finish with last output layer, maybe like this for calssification
o=tf.keras.layers.Dense(classes_number, activation='softmax', name='sequential_output')(combined)
#So you pass to the model:
model_combined = tf.keras.models.Model(inputs=[s_inputs, [v for v in feature_layer_inputs.values()]], outputs=o)
Also note. In model fit() method you should pass info which data sould be used for each input.
One way, if you use tf.data.Dataset, take care that you have used the same names for features in Dataset and for keys in feature_layer_inputs dictionary
Other way use explicite notation like:
model.fit({'review_meta_id_input': review_meta_id_data, 'priors_input': priors_data, 'kid_youngest_month': kid_youngest_month_data},
{'outputs': o},
...
)

Word2Vec + LSTM on API Sequence

I am trying to apply word2Vec and LSTM on a dataset that contains files' API trace log including API function calls and their parameters for a binary classification.
The data looks like:
File_ID, Label, API Trace log
1, M, kernel32 LoadLibraryA kernel32.dll
kernel32 GetProcAddress MZ\x90 ExitProcess
...
2, V, kernel32 GetModuleHandleA RPCRT4.dll
kernel32 GetCurrentThreadId d\x8B\x0D0 POINTER POINTER
...
The API trace including: module name, API function name, parameters (that separated by blank space)
Take first API trace of file 1 as example, kernel32 is the module name, LoadLibraryA is function name, kernel32.dll is parameter. Each API trace is separated by \n so that each line represents a API sequence information sequentially.
Firstly I trained a word2vec model based on the line sentence of all API trace log. There are about 5k API function calls, e.g. LoadLibraryA, GetProcAddress. However, because parameter value could be vary, the model becomes quite big (with 300,000 vocabulary) after including those parameters.
After that, I trained a LSTM by applying word2vec's embedding_wrights, the model structure looks like:
model = Sequential()
model.add(Embedding(output_dim=vocab_dim, input_dim=n_symbols, \
mask_zero=False, weights=[embedding_weights], \
trainable=False))
model.add(LSTM(dense_dim,kernel_initializer='he_normal', dropout=0.15,
recurrent_dropout=0.15, implementation=2))
model.add(Dropout(0.3))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, batch_size=batch_size, callbacks=[early_stopping, parallel_check_cb])
The way I get embedding_weights is to create a matrix, for each vocabulary in word2vec model, map the index of the word in the model, to it's vector
def create_embedding_weights(model, max_index=0):
# dimensionality of your word vectors
num_features = len(model[model.vocab.keys()[0]])
n_symbols = len(model.vocab) + 1 # adding 1 to account for 0th index (for masking)
# Only word2vec feature set
embedding_weights = np.zeros((max(n_symbols + 1, max_index + 1), num_features))
for word, value in model.vocab.items():
embedding_weights[value.index, :] = model[word]
return embedding_weights
For training data, what I did is that for each word in API call, convert the actual word to the index of word2vec model so that it's consistent to the index in embedding_weights above. e.g. kernel32 -> 0, LoadLibraryA -> 1, kernel32.dll -> 2. GetProcAddress -> 4, MZ\x90 -> 5, ExitProcess ->6
So the train data for file 1 looks like [0, 1, 2, 3, 4, 5, 6]. Noted, I didn't do line split for each API trace. As a result, the model may not know where is the start and end of API trace? And the training accuracy of the model is pretty bad - accuracy is 50% :(
My question is that, when prepare the training and validation dataset, should I also split the line when mapping the actual words to their index? then The above training data would be changed to following, each API trace is separated by a line, and maybe padd the missing value to -1 which doesn't exist in word2vec's indexes.
[[0, 1, 2, -1]
[3, 4, 5, 6]]
Meanwhile I am using a very simple structure for training, while word2vec model is quite big, any suggestion on structure would also be appreciated.
I would at least split the trace lines in three:
Module (make a dictionary and an embedding)
Function (make a dictionary and an embedding)
Parameters (make a dictionary and an embedding - see details later)
Since this is a very specific application, I believe it would be best to keep the embeddings trainable (the whole point of the embeddings is to create meaningful vectors, and the meanings depend a lot on the model that is going to use them. Question: how did you create the word2vec model? From what data does it learn?).
This model would have more inputs. All of them as integers from zero to max dictionary index. Consider using mask_zero=True and padding all files to maxFileLines.
moduleInput = Input(maxFileLines,)
functionInput = Input(maxFileLines,)
For the parameters, I'd probably make a subsequence as if the list of parameters were a sentence. (Again, mask_zero=True, and pad up to maxNumberOfParameters)
parametersInput = Input(maxFileLines, maxNumberOfParameters)
Function and module embeddings:
moduleEmb = Embedding(.....mask_zero=True,)(moduleInput)
functionEmb = Embedding(.....mask_zero=True)(functionInput)
Now, for the parameters, I though of creating a sequence of sequences (maybe this is too much). For that, I first transfer the lines dimension to the batch dimension and work with only length = maxNumberOfParameters:
paramEmb = Lambda(lambda x: K.reshape(x,(-1,maxNumberOfParameters)))(parametersInput)
paramEmb = Embedding(....,mask_zero=True)(paramEmb)
paramEmb = Lambda(lambda x: K.reshape(x,(-1,maxFileLines,embeddingSize)))(paramEmb)
Now we concatenate all of them in the last dimension and we're ready to get into the LSTMs:
joinedEmbeddings = Concatenate()([moduleEmb,functoinEmb,paramEmb])
out = LSTM(...)(joinedEmbeddings)
out = ......
model = Model([moduleInput,functionInput,parametersInput], out)
How to prepare the inputs
With this model, you need three separate inputs. One for the module, one for the function and one for the parameters.
These inputs will contain only indices (no vectors). And they don't need a previous word2vec model. Embeddings are word2vec transformers.
So, get the file lines and split. First we split by commas, then we split the API calls by spaces:
import numpy as np
#read the file
loadedFile = open(fileName,'r')
allLines = [l.strip() for l in loadedFile.readlines()]
loadedFile.close()
#split by commas
splitLines = []
for l in allLines[1:]: #use 1 here only if you have headers in the file
splitLines.append (l.split(','))
splitLines = np.array(splitLines)
#get the split values and separate ids, targets and calls
ids = splitLines[:,0]
targets = splitLines[:,1]
calls = splitLines[:,2]
#split the calls by space, adding dummy parameters (spaces) to the max length
splitCalls = []
for c in calls:
splitC = c.strip().split(' ')
#pad the parameters (space for dummy params)
for i in range(len(splitC),maxParams+2):
splitC.append(' ')
splitCalls.append(splitC)
splitCalls = np.array(splitCalls)
modules = splitCalls[:,0]
functions = splitCalls[:,1]
parameters = splitCalls[:,2:] #notice the parameters have an extra dimension
Now lets make the indices:
modIndices, modCounts = np.unique(modules,return_counts=True)
funcIndices, funcCounts = np.unique(functions,return_counts=True)
#for de parameters, let's flatten the array first (because we have 2 dimensions)
flatParams = parameters.reshape((parameters.shape[0]*parameters.shape[1],))
paramIndices, paramCounts = np.unique(flatParams,return_counts=True)
These will create a list of unique words and get their counts. Here you can customize which words you're going to group in "another word" class. (Maybe based on the counts, if the count is too little, make it an "another word").
Let's then make the dictionaries:
def createDic(uniqueWords):
dic = {}
for i,word in enumerate(uniqueWords):
dic[word] = i + 1 # +1 because we want to reserve the zeros for padding
return dic
Just take care with the parameters, because we used a dummy space there:
moduleDic = createDic(modIndices)
funcDic = createDic(funcIndices)
paramDic = createDic(paramIndices[1:]) #make sure the space got the first position here
paramDic[' '] = 0
Well, now we just replace the original values:
moduleData = [moduleDic[word] for word in modules]
funcData = [funcDic[word] for word in functions]
paramData = [[paramDic[word] for word in paramLine] for paramLine in parameters]
Pad them:
for i in range(len(moduleData),maxFileLines):
moduleData.append(0)
funcData.append(0)
paramData.append([0] * maxParams)
Do this for every file, and store in a list of files:
moduleTrainData = []
functionTrainData = []
paramTrainData = []
for each file do the above and:
moduleTrainData.append(moduleData)
functionTrainData.append(funcData)
paramTrainData.append(paramData)
moduleTrainData = np.asarray(moduleTrainData)
functionTrainData = np.asarray(functionTrainData)
paramTrainData = np.asarray(paramTrainData)
That's all for the inputs.
model.fit([moduleTrainData,functionTrainData,paramTrainData],outputLabels,...)

Tensorflow vocabularyprocessor

I am following the wildml blog on text classification using tensorflow. I am not able to understand the purpose of max_document_length in the code statement :
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
Also how can i extract vocabulary from the vocab_processor
I have figured out how to extract vocabulary from vocabularyprocessor object. This worked perfectly for me.
import numpy as np
from tensorflow.contrib import learn
x_text = ['This is a cat','This must be boy', 'This is a a dog']
max_document_length = max([len(x.split(" ")) for x in x_text])
## Create the vocabularyprocessor object, setting the max lengh of the documents.
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
## Transform the documents using the vocabulary.
x = np.array(list(vocab_processor.fit_transform(x_text)))
## Extract word:id mapping from the object.
vocab_dict = vocab_processor.vocabulary_._mapping
## Sort the vocabulary dictionary on the basis of values(id).
## Both statements perform same task.
#sorted_vocab = sorted(vocab_dict.items(), key=operator.itemgetter(1))
sorted_vocab = sorted(vocab_dict.items(), key = lambda x : x[1])
## Treat the id's as index into list and create a list of words in the ascending order of id's
## word with id i goes at index i of the list.
vocabulary = list(list(zip(*sorted_vocab))[0])
print(vocabulary)
print(x)
not able to understand the purpose of max_document_length
The VocabularyProcessor maps your text documents into vectors, and you need these vectors to be of a consistent length.
Your input data records may not (or probably won't) be all the same length. For example if you're working with sentences for sentiment analysis they'll be of various lengths.
You provide this parameter to the VocabularyProcessor so that it can adjust the length of output vectors. According to the documentation,
max_document_length: Maximum length of documents. if documents are
longer, they will be trimmed, if shorter - padded.
Check out the source code.
def transform(self, raw_documents):
"""Transform documents to word-id matrix.
Convert words to ids with vocabulary fitted with fit or the one
provided in the constructor.
Args:
raw_documents: An iterable which yield either str or unicode.
Yields:
x: iterable, [n_samples, max_document_length]. Word-id matrix.
"""
for tokens in self._tokenizer(raw_documents):
word_ids = np.zeros(self.max_document_length, np.int64)
for idx, token in enumerate(tokens):
if idx >= self.max_document_length:
break
word_ids[idx] = self.vocabulary_.get(token)
yield word_ids
Note the line word_ids = np.zeros(self.max_document_length).
Each row in raw_documents variable will be mapped to a vector of length max_document_length.