In a Rust project there is a module with utilities to support testing, packed in a module test_utils:
#[cfg(test)]
pub mod test_utils;
Is there a way to make cargo doc generate also the documentation for test_utils module and the things inside?
There are probably multiple ways of generating documentation for tests, but I think the easier approach is to generate the documentation with cargo rustdoc and pass the --cfg test flag through:
cargo rustdoc -- --cfg test
I just found that this works too:
#[cfg(any(test, doc))]
pub mod test_utils;
While documentation is generated with regular
cargo doc
I think #[cfg(any(test, doc))] is probably not enough, it will generate doc with no function information.
/// The module should work
#[cfg(any(test, doc))]
pub mod test_utils {
/// The function about test1
#[test]
fn test1() {
assert!(true);
}
}
In order to doc with utilities to support testing, perhaps [cfg_attr(not(doc), test)] is necessary.
/// The module should work
#[cfg(any(test, doc))]
pub mod test_utils {
/// The function about test1
#[cfg_attr(not(doc), test)]
fn test1() {
assert!(true);
}
}
After added [cfg_attr(not(doc), test)] above test cases:
Related
In Rust the main function is defined like this:
fn main() {
}
This function does not allow for a return value though. Why would a language not allow for a return value and is there a way to return something anyway? Would I be able to safely use the C exit(int) function, or will this cause leaks and whatnot?
As of Rust 1.26, main can return a Result:
use std::fs::File;
fn main() -> Result<(), std::io::Error> {
let f = File::open("bar.txt")?;
Ok(())
}
The returned error code in this case is 1 in case of an error. With File::open("bar.txt").expect("file not found"); instead, an error value of 101 is returned (at least on my machine).
Also, if you want to return a more generic error, use:
use std::error::Error;
...
fn main() -> Result<(), Box<dyn Error>> {
...
}
std::process::exit(code: i32) is the way to exit with a code.
Rust does it this way so that there is a consistent explicit interface for returning a value from a program, wherever it is set from. If main starts a series of tasks then any of these can set the return value, even if main has exited.
Rust does have a way to write a main function that returns a value, however it is normally abstracted within stdlib. See the documentation on writing an executable without stdlib for details.
As was noted by others, std::process::exit(code: i32) is the way to go here
More information about why is given in RFC 1011: Process Exit. Discussion about the RFC is in the pull request of the RFC.
The reddit thread on this has a "why" explanation:
Rust certainly could be designed to do this. It used to, in fact.
But because of the task model Rust uses, the fn main task could start a bunch of other tasks and then exit! But one of those other tasks may want to set the OS exit code after main has gone away.
Calling set_exit_status is explicit, easy, and doesn't require you to always put a 0 at the bottom of main when you otherwise don't care.
Try:
use std::process::ExitCode;
fn main() -> ExitCode {
ExitCode::from(2)
}
Take a look in doc
or:
use std::process::{ExitCode, Termination};
pub enum LinuxExitCode { E_OK, E_ERR(u8) }
impl Termination for LinuxExitCode {
fn report(self) -> ExitCode {
match self {
LinuxExitCode::E_OK => ExitCode::SUCCESS,
LinuxExitCode::E_ERR(v) => ExitCode::from(v)
}
}
}
fn main() -> LinuxExitCode {
LinuxExitCode::E_ERR(3)
}
You can set the return value with std::os::set_exit_status.
This question already has answers here:
How to mock specific methods but not all of them in Rust?
(2 answers)
How to mock external dependencies in tests? [duplicate]
(1 answer)
How can I test stdin and stdout?
(1 answer)
Is there a way of detecting whether code is being called from tests in Rust?
(1 answer)
What is the proper way to use the `cfg!` macro to choose between multiple implementations?
(1 answer)
Closed 3 years ago.
I have a function generates a salted hash digest for some data. For the salt, it uses a random u32 value. It looks something like this:
use rand::RngCore;
use std::collections::hash_map::DefaultHasher;
use std::hash::Hasher;
fn hash(msg: &str) -> String {
let salt = rand::thread_rng().next_u32();
let mut s = DefaultHasher::new();
s.write_u32(salt);
s.write(msg.as_bytes());
format!("{:x}{:x}", &salt, s.finish())
}
In a test, I'd like to validate that it produces expected values, given a known salt and string. How do I mock (swizzle?) rand::thread_rng().next_u32() in the test to generate a specific value? In other words, what could replace the comment in this example to make the test pass?
mod tests {
#[test]
fn test_hashes() {
// XXX How to mock ThreadRng::next_u32() to return 3892864592?
assert_eq!(hash("foo"), "e80866501cdda8af09a0a656");
}
}
Some approaches I've looked at:
I'm aware that the ThreadRng returned by rand::thread_rng() implements RngCore, so in theory I could set a variable somewhere to store a reference to a RngCore, and implement my own mocked variant to set during testing. I've taken this sort of approach in Go and Java, but I couldn't get the Rust type checker to allow it.
I looked at the list of mock frameworks, such as MockAll, but they appear to be designed to mock a struct or trait to pass to a method, and this code doesn't pass one, and I wouldn't necessarily want users of the library to be able to pass in a RngCore.
Use the #[cfg(test)] macro to call a different function specified in the tests module, then have that function read the value to return from elsewhere. This I got to work, but had to use an unsafe mutable static variable to set the value for the mocked method to find, which seems gross. Is there a better way?
As a reference, I'll post an answer using the #[cfg(test)] + unsafe mutable static variable technique, but hope there's a more straightforward way to do this sort of thing.
In the test module, use lazy-static to add a static variable with a Mutex for thread safety, create a function like next_u32() to return its value, and have tests set the static variable to a known value. It should fall back on returning a properly random number if it's not set, so here I've made it Vec<u32> so it can tell:
mod tests {
use super::*;
use lazy_static::lazy_static;
use std::sync::Mutex;
lazy_static! {
static ref MOCK_SALT: Mutex<Vec<u32>> = Mutex::new(vec![]);
}
// Replaces random salt generation when testing.
pub fn mock_salt() -> u32 {
let mut sd = MOCK_SALT.lock().unwrap();
if sd.is_empty() {
rand::thread_rng().next_u32()
} else {
let ret = sd[0];
sd.clear();
ret
}
}
#[test]
fn test_hashes() {
MOCK_SALT.lock().unwrap().push(3892864592);
assert_eq!(hash("foo"), "e80866501cdda8af09a0a656");
}
}
Then modify hash() to call tests::mock_salt() instead of rand::thread_rng().next_u32() when testing (the first three lines of the function body are new):
fn hash(msg: &str) -> String {
#[cfg(test)]
let salt = tests::mock_salt();
#[cfg(not(test))]
let salt = rand::thread_rng().next_u32();
let mut s = DefaultHasher::new();
s.write_u32(salt);
s.write(msg.as_bytes());
format!("{:x}{:x}", &salt, s.finish())
}
Then use of the macros allows Rust to determine, at compile time, which function to call, so there's no loss of efficiency in non-test builds. It does mean that there's some knowledge of the tests module in the source code, but it's not included in the binary, so should be relatively safe. I suppose there could be a custom derive macro to automate this somehow. Something like:
#[mock(rand::thread_rng().next_u32())]
let salt = rand::thread_rng().next_u32();
Would auto-generate the mocked method in the tests module (or elsewhere?), slot it in here, and provide functions for the tests to set the value --- only when testing, of course. Seems like a lot, though.
Playground.
I am writing a test for a macro I want to export. The test works as long as I keep my tests in a single file, but as soon as I put the tests module in a separate file, I get an error.
export/src/lib.rs
pub mod my_mod {
#[macro_export]
macro_rules! my_macro {
( $x:expr ) => { $x + 1 };
}
pub fn my_func(x: isize) -> isize {
my_macro!(x)
}
}
export/tests/lib.rs
#[macro_use]
extern crate export;
mod my_test_mod {
use export::my_mod;
#[test]
fn test_func() {
assert_eq!(my_mod::my_func(1), 2);
}
#[test]
fn test_macro() {
assert_eq!(my_macro!(1), 2);
}
}
Running cargo test indicates that both tests passed. If I extract my_test_mod to a file it no longer compiles.
export/src/lib.rs
Unchanged
export/tests/lib.rs
#[macro_use]
extern crate export;
mod my_test_mod;
export/tests/my_test_mod.rs
use export::my_mod;
#[test]
fn test_func() {
assert_eq!(my_mod::my_func(1), 2);
}
#[test]
fn test_macro() {
assert_eq!(my_macro!(1), 2); // error: macro undefined: 'my_macro!'
}
This gives me an error that the macro is undefined.
The problem here is that you aren't compiling what you think you are compiling. Check it out:
$ cargo test --verbose
Compiling export v0.1.0 (file:///private/tmp/export)
Running `rustc --crate-name my_test_mod tests/my_test_mod.rs ...`
When you run cargo test, it assumes that every .rs file is a test to be run. It doesn't know that my_test_mod.rs should only be compiled as part of another test!
The easiest solution is to move your module to the other valid module location, in a separate directory: tests/my_test_mod/mod.rs. Cargo will not recursively look inside the directory for test files.
I want to run a single junit4 test suite and specified it using filter in build.gradle ,but gradle(version 2.10) find no tests.
Is there a way to run a specified junit test suite in gradle?
My test suite class
#RunWith(Suite.class)
#SuiteClasses({ TestFoo.class, TestBar.class })
public class MyTestSuite {
}
build.gradle
test {
filter {
includeTestsMatching "*MyTestSuite"
}
}
The example in the DSL documentation uses include instead:
test {
// explicitly include or exclude tests
include 'org/foo/**'
exclude 'org/boo/**'
}
filter is probably meant to be used in combination with include and exclude. Doc says: Allows filtering tests for execution.
So if you would like to run just a single method foo:
test {
include '**MyTestSuite.class'
filter {
includeTestsMatching "*TestBar.foo"
}
}
I have two modules in separate files within the same crate, where the crate has macro_rules enabled. I want to use the macros defined in one module in another module.
// macros.rs
#[macro_export] // or not? is ineffectual for this, afaik
macro_rules! my_macro(...)
// something.rs
use macros;
// use macros::my_macro; <-- unresolved import (for obvious reasons)
my_macro!() // <-- how?
I currently hit the compiler error "macro undefined: 'my_macro'"... which makes sense; the macro system runs before the module system. How do I work around that?
Macros within the same crate
New method (since Rust 1.32, 2019-01-17)
foo::bar!(); // works
mod foo {
macro_rules! bar {
() => ()
}
pub(crate) use bar; // <-- the trick
}
foo::bar!(); // works
With the pub use, the macro can be used and imported like any other item. And unlike the older method, this does not rely on source code order, so you can use the macro before (source code order) it has been defined.
Old method
bar!(); // Does not work! Relies on source code order!
#[macro_use]
mod foo {
macro_rules! bar {
() => ()
}
}
bar!(); // works
If you want to use the macro in the same crate, the module your macro is defined in needs the attribute #[macro_use]. Note that macros can only be used after they have been defined!
Macros across crates
Crate util
#[macro_export]
macro_rules! foo {
() => ()
}
Crate user
use util::foo;
foo!();
Note that with this method, macros always live at the top-level of a crate! So even if foo would be inside a mod bar {}, the user crate would still have to write use util::foo; and not use util::bar::foo;. By using pub use, you can export a macro from a module of your crate (in addition to it being exported at the root).
Before Rust 2018, you had to import macro from other crates by adding the attribute #[macro_use] to the extern crate util; statement. That would import all macros from util. This syntax should not be necessary anymore.
Alternative approach as of 1.32.0 (2018 edition)
Note that while the instructions from #lukas-kalbertodt are still up to date and work well, the idea of having to remember special namespacing rules for macros can be annoying for some people.
EDIT: it turns out their answer has been updated to include my suggestion, with no credit mention whatsoever ๐
On the 2018 edition and onwards, since the version 1.32.0 of Rust, there is another approach which works as well, and which has the benefit, imho, of making it easier to teach (e.g., it renders #[macro_use] obsolete). The key idea is the following:
A re-exported macro behaves as any other item (function, type, constant, etc.): it is namespaced within the module where the re-export occurs.
It can then be referred to with a fully qualified path.
It can also be locally used / brought into scope so as to refer to it in an unqualified fashion.
Example
macro_rules! macro_name { ... }
pub(crate) use macro_name; // Now classic paths Just Workโข
And that's it. Quite simple, huh?
Feel free to keep reading, but only if you are not scared of information overload ;) I'll try to detail why, how and when exactly does this work.
More detailed explanation
In order to re-export (pub(...) use ...) a macro, we need to refer to it! That's where the rules from the original answer are useful: a macro can always be named within the very module where the macro definition occurs, but only after that definition.
macro_rules! my_macro { ... }
my_macro!(...); // OK
// Not OK
my_macro!(...); /* Error, no `my_macro` in scope! */
macro_rules! my_macro { ... }
Based on that, we can re-export a macro after the definition; the re-exported name, then, in and of itself, is location agnostic, as all the other global items in Rust ๐
In the same fashion that we can do:
struct Foo {}
fn main() {
let _: Foo;
}
We can also do:
fn main() {
let _: A;
}
struct Foo {}
use Foo as A;
The same applies to other items, such as functions, but also to macros!
fn main() {
a!();
}
macro_rules! foo { ... } // foo is only nameable *from now on*
use foo as a; // but `a` is now visible all around the module scope!
And it turns out that we can write use foo as foo;, or the common use foo; shorthand, and it still works.
The only question remaining is: pub(crate) or pub?
For #[macro_export]-ed macros, you can use whatever privacy you want; usually pub.
For the other macro_rules! macros, you cannot go above pub(crate).
Detailed examples
For a non-#[macro_export]ed macro
mod foo {
use super::example::my_macro;
my_macro!(...); // OK
}
mod example {
macro_rules! my_macro { ... }
pub(crate) use my_macro;
}
example::my_macro!(...); // OK
For a #[macro_export]-ed macro
Applying #[macro_export] on a macro definition makes it visible after the very module where it is defined (so as to be consistent with the behavior of non-#[macro_export]ed macros), but it also puts the macro at the root of the crate (where the macro is defined), in an absolute path fashion.
This means that a pub use macro_name; right after the macro definition, or a pub use crate::macro_name; in any module of that crate will work.
Note: in order for the re-export not to collide with the "exported at the root of the crate" mechanic, it cannot be done at the root of the crate itself.
pub mod example {
#[macro_export] // macro nameable at `crate::my_macro`
macro_rules! my_macro { ... }
pub use my_macro; // macro nameable at `crate::example::my_macro`
}
pub mod foo {
pub use crate::my_macro; // macro nameable at `crate::foo::my_macro`
}
When using the pub / pub(crate) use macro_name;, be aware that given how namespaces work in Rust, you may also be re-exporting constants / functions or types / modules. This also causes problems with globally available macros such as #[test], #[allow(...)], #[warn(...)], etc.
In order to solve these issues, remember you can rename an item when re-exporting it:
macro_rules! __test__ { ... }
pub(crate) use __test__ as test; // OK
macro_rules! __warn__ { ... }
pub(crate) use __warn__ as warn; // OK
Also, some false positive lints may fire:
from the trigger-happy clippy tool, when this trick is done in any fashion;
from rustc itself, when this is done on a macro_rules! definition that happens inside a function's body: https://github.com/rust-lang/rust/issues/78894
This answer is outdated as of Rust 1.1.0-stable.
You need to add #![macro_escape] at the top of macros.rs and include it using mod macros; as mentioned in the Macros Guide.
$ cat macros.rs
#![macro_escape]
#[macro_export]
macro_rules! my_macro {
() => { println!("hi"); }
}
$ cat something.rs
#![feature(macro_rules)]
mod macros;
fn main() {
my_macro!();
}
$ rustc something.rs
$ ./something
hi
For future reference,
$ rustc -v
rustc 0.13.0-dev (2790505c1 2014-11-03 14:17:26 +0000)
Adding #![macro_use] to the top of your file containing macros will cause all macros to be pulled into main.rs.
For example, let's assume this file is called node.rs:
#![macro_use]
macro_rules! test {
() => { println!("Nuts"); }
}
macro_rules! best {
() => { println!("Run"); }
}
pub fn fun_times() {
println!("Is it really?");
}
Your main.rs would look sometime like the following:
mod node; //We're using node.rs
mod toad; //Also using toad.rs
fn main() {
test!();
best!();
toad::a_thing();
}
Finally let's say you have a file called toad.rs that also requires these macros:
use node; //Notice this is 'use' not 'mod'
pub fn a_thing() {
test!();
node::fun_times();
}
Notice that once files are pulled into main.rs with mod, the rest of your files have access to them through the use keyword.
I have came across the same problem in Rust 1.44.1, and this solution works for later versions (known working for Rust 1.7).
Say you have a new project as:
src/
main.rs
memory.rs
chunk.rs
In main.rs, you need to annotate that you are importing macros from the source, otherwise, it will not do for you.
#[macro_use]
mod memory;
mod chunk;
fn main() {
println!("Hello, world!");
}
So in memory.rs you can define the macros, and you don't need annotations:
macro_rules! grow_capacity {
( $x:expr ) => {
{
if $x < 8 { 8 } else { $x * 2 }
}
};
}
Finally you can use it in chunk.rs, and you don't need to include the macro here, because it's done in main.rs:
grow_capacity!(8);
The upvoted answer caused confusion for me, with this doc by example, it would be helpful too.
Note: This solution does work, but do note as #ineiti highlighted in the comments, the order u declare the mods in the main.rs/lib.rs matters, all mods declared after the macros mod declaration try to invoke the macro will fail.