Here is my pandas dataframe:
df = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-12',6: '2016-10-12',7: '2016-10-12',8: '2016-10-12',9: '2016-10-12'}, 'Stock': {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H',8: 'I', 9:'J'}, 'Sector': {0: 0,1: 0, 2: 1, 3: 1, 4: 1, 5: 0, 6:0, 7:0, 8:1, 9:1}, 'Segment': {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6:2,7:2,8:3,9:3}, 'Range': {0: 5, 1: 0, 2: 1, 3: 0, 4: 2, 5: 6, 6:0, 7:23, 8:5, 9:5}})
Here is how it looks:
I want to add the following columns:
'Date_Range_Avg': average of 'Range' grouped by Date
'Date_Sector_Range_Avg': average of 'Range' grouped by Date and Sector
'Date_Segment_Range_Avg': average of 'Range' grouped by Date and Segment
This would be the output:
res = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-12',6: '2016-10-12',7: '2016-10-12',8: '2016-10-12',9: '2016-10-12'}, 'Stock': {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H',8: 'I', 9:'J'}, 'Sector': {0: 0,1: 0, 2: 1, 3: 1, 4: 1, 5: 0, 6:0, 7:0, 8:1, 9:1}, 'Segment': {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6:2,7:2,8:3,9:3}, 'Range': {0: 5, 1: 0, 2: 1, 3: 0, 4: 2, 5: 6, 6:0, 7:23, 8:5, 9:5}, 'Date_Range_Avg':{0: 1.6, 1: 1.6, 2: 1.6, 3: 1.6, 4: 1.6, 5: 7.8, 6: 7.8, 7: 7.8, 8:7.8, 9: 7.8}, 'Date_Sector_Range_Avg':{0: 2.5, 1: 2.5, 2: 1, 3: 1, 4: 1, 5: 9.67, 6: 9.67, 7: 9.67, 8: 9.67, 9: 9.67}, 'Date_Segment_Range_Avg':{0: 5, 1: 0.75, 2: 0.75, 3: 0.75, 4: 0.75, 5: 6, 6: 11.5, 7: 11.5, 8: 5, 9: 5}})
This is how it looks:
Note I have rounded some of the values - but this rounding is not essential for the question I have (please feel free to not round)
I'm aware that I can do each of these groupings separately but it strikes me as inefficient (my dataset contains millions of rows)
Essentially, I would like to first do a grouping by Date and then re-use it to do the two more fine-grained groupings by Date and Segment and by Date and Sector.
How to do this?
My initial hunch is to go like this:
day_groups = df.groupby("Date")
df['Date_Range_Avg'] = day_groups['Range'].transform('mean')
and then to re-use day_groups to do the 2 more fine-grained groupbys like this:
df['Date_Sector_Range_Avg'] = day_groups.groupby('Segment')[Range].transform('mean')
Which doesn't work as you get:
'AttributeError: 'DataFrameGroupBy' object has no attribute 'groupby''
groupby runs really fast when the aggregate function is vectorized. If you are worried about performance, try it out first to see if it's the real bottleneck in your program.
You can create temporary data frames holding the result of each groupby, then successively merge them with df:
group_bys = {
"Date_Range_Avg": ["Date"],
"Date_Sector_Range_Avg": ["Date", "Sector"],
"Date_Segment_Range_Avg": ["Date", "Segment"]
}
tmp = [
df.groupby(columns)["Range"].mean().to_frame(key)
for key, columns in group_bys.items()
]
result = df
for t in tmp:
result = result.merge(t, left_on=t.index.names, right_index=True)
Result:
Date Stock Sector Segment Range Date_Range_Avg Date_Sector_Range_Avg Date_Segment_Range_Avg
0 2016-10-11 A 0 0 5 1.6 2.500000 5.00
1 2016-10-11 B 0 1 0 1.6 2.500000 0.75
2 2016-10-11 C 1 1 1 1.6 1.000000 0.75
3 2016-10-11 D 1 1 0 1.6 1.000000 0.75
4 2016-10-11 E 1 1 2 1.6 1.000000 0.75
5 2016-10-12 F 0 1 6 7.8 9.666667 6.00
6 2016-10-12 G 0 2 0 7.8 9.666667 11.50
7 2016-10-12 H 0 2 23 7.8 9.666667 11.50
8 2016-10-12 I 1 3 5 7.8 5.000000 5.00
9 2016-10-12 J 1 3 5 7.8 5.000000 5.00
Another option is to use transform, and avoid the multiple merges:
# reusing your code
group_bys = {
"Date_Range_Avg": ["Date"],
"Date_Sector_Range_Avg": ["Date", "Sector"],
"Date_Segment_Range_Avg": ["Date", "Segment"]
}
tmp = {key : df.groupby(columns)["Range"].transform('mean')
for key, columns in group_bys.items()
}
df.assign(**tmp)
Related
If I have the following dataframe:
import pandas as pd
df = {'Status': {0: 'Available',
1: 'Collect',
2: 'Failed',
3: 'Delivered',
4: 'Totaal',
5: 'sent out',
6: 'received',
7: 'Not yet executed',
8: 'received',
9: 'Approved'},
'Aantal': {0: 5,
1: 25,
2: 35,
3: 55,
4: 105,
5: 65,
6: 75,
7: 95,
8: 55,
9: 505}}
df = pd.DataFrame(df)
And I would like to re-arrange the order of the dataframe. So instead of the first row; 'Available', I would like Collect.
How can I do this?
Thank you in advance.
A robust way might be to sort using inequality to "Collect" as key and a stable sort:
out = df.sort_values('Status', key=lambda s: s.ne('Collect'), kind='stable')
Other option, using slicing and concat:
m = df['Status'].eq('Collect')
out = pd.concat([df[m], df[~m]])
output:
Status Aantal
1 Collect 25
0 Available 5
2 Failed 35
3 Delivered 55
4 Totaal 105
5 sent out 65
6 received 75
7 Not yet executed 95
8 received 55
9 Approved 505
How can I separate this data column by 'A','B' ...?
The first column as an index must be retained.
df = pd.DataFrame(data)
df = df[['seconds', 'marker', 'data1', 'data2', 'data3']]
seconds,marker,data1,data2,data3
00001,A,3,3,0,42,0
00002,B,3,3,0,34556,0
00003,C,3,3,0,42,0
00004,A,3,3,0,1833,0
00004,B,3,3,0,6569,0
00005,C,3,3,0,2454,0
00006,C,3,3,0,3256,0
00007,C,3,3,0,5423,0
00008,A,3,3,0,569,0
You can just get the unique values in the letter column (that's what I called it). And then filter the DataFrame containing all values using these unique values.
I am storing the newly created DataFrames in a dictionary here, but you could also store them in a list or whatever. I've used the input you have provided but have given the first 2 columns the names index and letter as they were unnamed in your .csv.
import pandas as pd
df = pd.DataFrame({
'index': {0: 1, 1: 2, 2: 3, 3: 4, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8},
'letter': {0: 'A', 1: 'B', 2: 'C', 3: 'A', 4: 'B', 5: 'C', 6: 'C', 7: 'C', 8: 'A'},
'seconds': {0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3, 7: 3, 8: 3},
'marker': {0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3, 7: 3, 8: 3},
'data1': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0},
'data2': {0: 42, 1: 34556, 2: 42, 3: 1833, 4: 6569, 5: 2454, 6: 3256, 7: 5423, 8: 569},
'data3': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0}
})
# get unique values
unique_values = df["letter"].unique()
# filter "big" dataframe using one of the unique value at a time
split_dfs = {value: df[df["letter"] == value] for value in unique_values}
print(split_dfs["A"])
print(split_dfs["B"])
print(split_dfs["C"])
Expected output:
index letter seconds marker data1 data2 data3
0 1 A 3 3 0 42 0
3 4 A 3 3 0 1833 0
8 8 A 3 3 0 569 0
index letter seconds marker data1 data2 data3
1 2 B 3 3 0 34556 0
4 4 B 3 3 0 6569 0
index letter seconds marker data1 data2 data3
2 3 C 3 3 0 42 0
5 5 C 3 3 0 2454 0
6 6 C 3 3 0 3256 0
7 7 C 3 3 0 5423 0
As you can see the index is preserved.
I have this minimal sample data:
import pandas as pd
from pandas import Timestamp
data = pd.DataFrame({'Client': {0: "Client_1", 1: "Client_2", 2: "Client_2", 3: "Client_3", 4: "Client_3", 5: "Client_3", 6: "Client_4", 7: "Client_4"},
'Id_Card': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8},
'Type': {0: 'A', 1: 'B', 2: 'C', 3: np.nan, 4: 'A', 5: 'B', 6: np.nan, 7: 'B'},
'Loc': {0: 'ADW', 1: 'ZCW', 2: 'EWC', 3: "VWQ", 4: "OKS", 5: 'EQW', 6: "PKA", 7: 'CSA'},
'Amount': {0: 10.0, 1: 15.0, 2: 17.0, 3: 32.0, 4: np.nan, 5: 51.0, 6: 38.0, 7: -20.0},
'Net': {0: 30.0, 1: 42.0, 2: -10.0, 3: 15.0, 4: 98, 5: np.nan, 6: 23.0, 7: -10.0},
'Date': {0: Timestamp('2018-09-29 00:00:00'), 1: Timestamp('1996-08-02 00:00:00'), 2: np.nan, 3: Timestamp('2020-11-02 00:00:00'), 4: Timestamp('2008-12-27 00:00:00'), 5: Timestamp('2004-12-21 00:00:00'), 6: np.nan, 7: Timestamp('2010-08-25 00:00:00')}})
data
I'm trying to aggregate this data grouping by Client column. Counting the Id_Card per client, concatenating Type, Loc, separated by ; (e.g. A;B and ZCW;EWC values for Client_2, NOT A;ZCW B;EWC), sum the Amount, Net, per client, and getting the minimum Date per client. However, I'm facing some problems:
These functions works perfectly individually, but I can't find a way to mix the aggregate function and apply function:
Code example:
data.groupby("Client").agg({"Id_Card": "count", "Amount":"sum", "Date": "min"})
data.groupby('Client')['Loc'].apply(';'.join).reset_index()
The apply function doesn't work for columns with missing values:
Code example:
data.groupby('Client')['Type'].apply(';'.join).reset_index()
TypeError: sequence item 0: expected str instance, float found
The aggregate and apply functions don't allow me to put multiple columns for one transformation:
Code example:
cols_to_sum = ["Amount", "Net"]
data.groupby("Client").agg({"Id_Card": "count", cols_to_sum:"sum", "Date": "min"})
cols_to_join = ["Type", "Loc"]
data.groupby('Client')[cols_to_join].apply(';'.join).reset_index()
In (3) I only put Amount and Net and I could put them separately in the aggregate function, but I'm looking to a more efficient way as I'm working with plenty of columns.
The output expected is the same dataframe, but aggregated with the conditions outlined at the beggining.
For doing a join, you would have to filter out the NaN values. As join you have to apply at two places, I have created a separate function
def join_non_nan_values(elements):
return ";".join([elem for elem in elements if elem == elem]) # elem == elem will fail for Nan values
data.groupby("Client").agg({"Id_Card": "count", "Type": join_non_nan_values,
"Loc": join_non_nan_values, "Amount":"sum", "Net": "sum", "Date": "min"})
Go step by step, and prepare three different data frames to merge them later.
First dataframe is for simple functions like count,sum,mean
df1 = data.groupby("Client").agg({"Id_Card": "count", "Amount":"sum", "Net":sum, "Date": "min"}).reset_index()
Next you deal with Type and Loc join, we use fill na to deal with nan values
df2=data[['Client', 'Type']].fillna('').groupby("Client")['Type'].apply(
';'.join).reset_index()
df3=data[['Client', 'Loc']].fillna('').groupby("Client")['Loc'].apply(
';'.join).reset_index()
And finally you merge the results together:
data_new = df1.merge(df2, on='Client').merge(df3, on='Client')
data_new output:
I am trying to calculate weighted average prices using pandas pivot table.
I have tried passing in a dictionary using aggfunc.
This does not work when passed into aggfunc, although it should calculate the correct weighted average.
'Price': lambda x: np.average(x, weights=df['Balance'])
I have also tried using a manual groupby:
df.groupby('Product').agg({
'Balance': sum,
'Price': lambda x : np.average(x, weights='Balance'),
'Value': sum
})
This also yields the error:
TypeError: Axis must be specified when shapes of a and weights differ.
Here is sample data
import pandas as pd
import numpy as np
price_dict = {'Product': {0: 'A',
1: 'A',
2: 'A',
3: 'A',
4: 'A',
5: 'B',
6: 'B',
7: 'B',
8: 'B',
9: 'B',
10: 'C',
11: 'C',
12: 'C',
13: 'C',
14: 'C'},
'Balance': {0: 10,
1: 20,
2: 30,
3: 40,
4: 50,
5: 60,
6: 70,
7: 80,
8: 90,
9: 100,
10: 110,
11: 120,
12: 130,
13: 140,
14: 150},
'Price': {0: 1,
1: 2,
2: 3,
3: 4,
4: 5,
5: 6,
6: 7,
7: 8,
8: 9,
9: 10,
10: 11,
11: 12,
12: 13,
13: 14,
14: 15},
'Value': {0: 10,
1: 40,
2: 90,
3: 160,
4: 250,
5: 360,
6: 490,
7: 640,
8: 810,
9: 1000,
10: 1210,
11: 1440,
12: 1690,
13: 1960,
14: 2250}}
Try to calculate weighted average by passing dict into aggfunc:
df = pd.DataFrame(price_dict)
df.pivot_table(
index='Product',
aggfunc = {
'Balance': sum,
'Price': np.mean,
'Value': sum
}
)
Output:
Balance Price Value
Product
A 150 3 550
B 400 8 3300
C 650 13 8550
The expected outcome should be :
Balance Price Value
Product
A 150 3.66 550
B 400 8.25 3300
C 650 13.15 8550
Here is one way using apply
df.groupby('Product').apply(lambda x : pd.Series(
{'Balance': x['Balance'].sum(),
'Price': np.average(x['Price'], weights=x['Balance']),
'Value': x['Value'].sum()}))
Out[57]:
Balance Price Value
Product
A 150.0 3.666667 550.0
B 400.0 8.250000 3300.0
C 650.0 13.153846 8550.0
My input data frame as below:
Input Dataframe:
Input1 = pd.DataFrame({'LOT': {0: 'A1', 1: 'A2', 2: 'A3', 3: 'A4', 4: 'A5'},
'OPERATION': {0: 100.0, 1: 100.0, 2: 100.0, 3: 100.0, 4: 100.0},
'TXN_DATE': {0: '12/6/2016',
1: '12/5/2016',
2: '11/30/2016',
3: '11/27/2016',
4: '11/22/2016'}})
Input2 = pd.DataFrame({'LOT': {0: 'B1', 1: 'B2', 2: 'B3', 3: 'B4', 4: 'B5', 5: 'B6'},
'OPERATION': {0: 500, 1: 500, 2: 500, 3: 500, 4: 500, 5: 500},
'TXN_DATE': {0: '12/7/2016',
1: '12/3/2016',
2: '11/17/2016',
3: '11/22/2016',
4: '12/4/2016',
5: '12/3/2016'}})
I am interesting to calculate companion lot from Input2 to lot in Input1 table based on minimum TXN_DATES delta between them (time delta suppose to be minimal):
Final DataFrame:
Expected_out = pd.DataFrame({'COMPANION_LOT': {0: 'B5', 1: 'B5', 2: 'B4', 3: 'B4', 4: 'B4'},
'COMPANION_LOT TXN_DATE': {0: '12/4/2016',
1: '12/4/2016',
2: '11/22/2016',
3: '11/22/2016',
4: '11/22/2016'},
'LOT': {0: 'A1', 1: 'A2', 2: 'A3', 3: 'A4', 4: 'A5'},
'OPERATION': {0: 100, 1: 100, 2: 100, 3: 100, 4: 100},
'TXN_DATE': {0: '12/6/2016',
1: '12/5/2016',
2: '11/30/2016',
3: '11/27/2016',
4: '11/22/2016'}})`
Thank you
You can use mainly pandas.merge_asof and then add new column by map:
Input1.TXN_DATE = pd.to_datetime(Input1.TXN_DATE)
Input2.TXN_DATE = pd.to_datetime(Input2.TXN_DATE)
Input1 = Input1.sort_values('TXN_DATE')
Input2 = Input2.sort_values('TXN_DATE')
df = pd.merge_asof(Input1, Input2, on='TXN_DATE', suffixes=('','_COMPANION')) \
.sort_values('LOT') \
.drop('OPERATION_COMPANION', axis=1)
df['LOT_TXN_DATE'] = df.LOT_COMPANION.map(Input2.set_index('LOT')['TXN_DATE'])
print (df)
LOT OPERATION TXN_DATE LOT_COMPANION LOT_TXN_DATE
4 A1 100.0 2016-12-06 B5 2016-12-04
3 A2 100.0 2016-12-05 B5 2016-12-04
2 A3 100.0 2016-11-30 B4 2016-11-22
1 A4 100.0 2016-11-27 B4 2016-11-22
0 A5 100.0 2016-11-22 B4 2016-11-22