Is there any shortcut to add sum of value it we have different parameters? - arraylist

I have following code, in this DemoClass have getter and setter for val1, val2, val3 and val4 respectively, I want to add each value if it has more than one value in list. For example:
in first iteration val11=10000, second iteration val12=2000 and so on.Now i want a solution that result val11+val12 and this should be for each value i.e val1, val2, val3 and val4.
List<DemoClass> list= new ArrayList<DemoClass>();
int count=1;
for (Iterator iterator = list.iterator(); iterator.hasNext();) {
DemoClass cls = (DemoClass) iterator.next();
parameter.put("val1"+count, cls.getVal1());
parameter.put("val2"+count, cls.getVal2());
parameter.put("val3"+count, cls.getVal3());
parameter.put("val4"+count, cls.getVal4());
count++;
}
DemoClass.java
public class DemoClass{
private String val1;
private String val2;
private String val3;
private String val4;
public String getVal1() {
return val1;
}
public void setVal1(String val1) {
this.val1= val1;
}
public String getVal2() {
return val2;
}
public void setVal2(String val2) {
this.val2= val2;
}
public String getVal3() {
return val3;
}
public void setVal3(String val3) {
this.val3= val3;
}
public String getval4() {
return val4;
}
public void setVal4(String val4) {
this.val4= val4;
}
}

If you want to get a single DemoClass instance that has in each value (val1, val2, val3, and val4) the sum of the integer value of the correspondent property in the DemoClass list in input this code will help if you are using JAVA 8 or higher version (Stream API)
public static DemoClass calcul(List<DemoClass> list) {
DemoClass demoClass = new DemoClass();
return list.stream().reduce(demoClass, (acc, curr) -> {
DemoClass tmp = new DemoClass();
tmp.setVal1(String.valueOf(Integer.parseInt(acc.getVal1()) + Integer.parseInt(curr.getVal1())));
tmp.setVal2(String.valueOf(Integer.parseInt(acc.getVal2()) + Integer.parseInt(curr.getVal2())));
tmp.setVal3(String.valueOf(Integer.parseInt(acc.getVal3()) + Integer.parseInt(curr.getVal3())));
tmp.setVal4(String.valueOf(Integer.parseInt(acc.getVal4()) + Integer.parseInt(curr.getVal4())));
return tmp;
});
}
UPDATE:
Solution for JAVA 7, you need to add all arguments constructor
public static DemoClass calcul(List<DemoClass> list) {
DemoClass demoClass = new DemoClass("0", "0", "0", "0");
for(DemoClass curr : list) {
demoClass.setVal1(String.valueOf(Integer.parseInt(demoClass.getVal1()) + Integer.parseInt(curr.getVal1())));
demoClass.setVal2(String.valueOf(Integer.parseInt(demoClass.getVal2()) + Integer.parseInt(curr.getVal2())));
demoClass.setVal3(String.valueOf(Integer.parseInt(demoClass.getVal3()) + Integer.parseInt(curr.getVal3())));
demoClass.setVal4(String.valueOf(Integer.parseInt(demoClass.getVal4()) + Integer.parseInt(curr.getVal4())));
}
return demoClass;
}
To get parameter Map:

Related

Make [FromQuery] bool testValue accept 'testValue', 'test_value' and 'test-value'

In ASP NET 6+ I need to make [FromQuery] replace underscores _ and minuses - before matching names.
So I want to plumb ASP to allow [FromQuery] bool testValue to be equivalent to all at once:
[FromQuery(Name="testValue")] bool testValue
[FromQuery(Name="test-value")] bool testValue
[FromQuery(Name="test_value")] bool testValue
Is there a place in the pipeline I can get in before names are compared (to remove _ and - myself)?
My current solution is just to replace the Request.Query with my own doctored QueryCollection that duplicates variables with fixed names in a middleware.
But I'm looking for any answer that's more... unhacky?!
public class RequeryMiddleware : IMiddleware
{
private static readonly char[] separators = new[] { '_', '-', '.', '|' };
private static bool Requery(ref string name)
{
bool changed = false;
if (name.IndexOfAny(separators) >= 0)
{
name = string.Concat(name.Split(separators, StringSplitOptions.None));
changed = true;
}
return changed;
}
public Task InvokeAsync(HttpContext context, RequestDelegate next)
{
Dictionary<string, StringValues> mods = new(
StringComparer.OrdinalIgnoreCase
);
foreach (var item in context.Request.Query)
{
string key = item.Key;
if (Requery(ref key))
{
mods.Add(key, item.Value);
}
}
if (mods.Count > 0)
{
Dictionary<string, StringValues> query = new(
context.Request.Query.Count + mods.Count
, StringComparer.OrdinalIgnoreCase
);
foreach (var item in context.Request.Query)
{
query.Add(item.Key, item.Value);
}
foreach (var mod in mods)
{
// if we get here it's bad...
query.TryAdd(mod.Key, mod.Value);
}
// replace the Query collection
context.Request.Query = new QueryCollection(query);
// change the QueryString too
QueryBuilder qb = new(context.Request.Query);
context.Request.QueryString = qb.ToQueryString();
}
return next(context);
}
}

toString reverse order in java

My method toString() is supposed to return a string representation of the stack. The string representation consists of the stacks's elements in the order they are stored, enclosed in square brackets. My problem is that I am now returning [element0, element1, element2, element3, element4] so I wonder if there is there a simple way to return the string in reverse order i.e. to return [element4, element3, element2, element1, element0] instead?
public class Stack<E> implements IStack<E> {
public String toString() {
String str = "[";
if (head != null) {
str += head.getmElement();
Node<E> tempNode = head.getmNextNode();
while (tempNode != null) {
str += ", " + tempNode.getmElement();
tempNode = tempNode.getmNextNode();
}
}
str += "]";
return str; }
Node class:
public class Node<E> {
private E mElement;
private Node<E> mNextNode;
Node(E data) {
this.setmElement(data);
}
public E getmElement() {
return this.mElement;
}
public void setmElement(E element) {
this.mElement = element;
}
public Node<E> getmNextNode()
{
return this.mNextNode;
}
public void setmNextNode(Node<E> node)
{
this.mNextNode = node;
}}
You could use a StringBuilder and insert every element at the beginning instead of appending it:
public String toString() {
StringBuilder sb = new StringBuilder("[");
if (head != null) {
sb.append(head.getmElement());
Node<E> tempNode = head.getmNextNode();
while (tempNode != null) {
sb.insert(1, ", ").inser(1, tempNode.getmElement());
tempNode = tempNode.getmNextNode();
}
}
sb.append("]");
return sb.toString();
}
Your list is only forward linked, so you could use a temporary ArrayList and add each element at the index 0.

#DataProvider + #Factory + Hashmaps

Facing compilation error when using #Factory with #DataProvider.
Trying to map hashmap to my dataprovider, and want to run all my testcase with first testdata row then next, so trying to use #Factory
HashMap < String, String testdata = new HashMap < String, String();
#Test
private void test_01() {
System.out.println(testdata.get("-some-hashmap-key-"));
}
#DataProvider
public static Object[][] getDataSet() {
int i = 0;
Object[][] dataSet = new Object[2][1];
HashMap < String, String > rowValuesMap = new HashMap();
for (-some logic - ) {
for (-some logic - ) {
dataSet[i][0] = rowValuesMap;
}
i++;
}
return dataSet;
}
#Factory(dataProvider = "getDataSet")
public MyTestFile(HashMap < String, String testdata) {
this.testdata = sheetdata;
}
HashMap declaration is wrong in all place. Try this
HashMap < String, String > testdata = new HashMap < String, String > ();
#Test
private void test_01() {
System.out.println(testdata.get("-some-hashmap-key-"));
}
#DataProvider
public static Object[][] getDataSet() {
int i = 0;
Object[][] dataSet = new Object[2][1];
HashMap < String, String > rowValuesMap = new HashMap < String, String > ();
for (-some logic - ) {
for (-some logic - ) {
dataSet[i][0] = rowValuesMap;
}
i++;
}
return dataSet;
}
#Factory(dataProvider = "getDataSet")
public MyTestFile(HashMap < String, String > testdata) {
this.testdata = sheetdata;
}

How to deserialize a JSON object to a binary tree by using Jackson

From the previous question How to deserialize a JSON array to a singly linked list , I learned how to deserialize a JSON array to a singly linked list.
Now I want to deserialize a JSON object to a binary tree in Java.
The definition of the binary tree node is as the following:
public class BinaryTreeNode<E> {
public E value;
public BinaryTreeNode left;
public BinaryTreeNode right;
public BinaryTreeNode(final E value) {
this.value = value;
}
}
How to deserialize a JSON string such as:
{
"value": 2,
"left": {
"value": 1,
"left": null,
"right": null
},
"right": {
"value": 10,
"left": {
"value": 5,
"left": null,
"right": null
},
"right": null
}
}
to a binary tree?
2
/ \
1 10
/
5
Here is the unit test code:
#Test public void binaryTreeNodeTest() throws IOException {
ObjectMapper objectMapper = new ObjectMapper();
final ArrayList<Integer> intArray = objectMapper.readValue("[1,2,3,4,5]",
new TypeReference<ArrayList<Integer>>() {});
System.out.println(intArray);
/* How to achieve this?
2
/ \
1 10
/
5
{
"value": 2,
"left": {
"value": 1,
"left": null,
"right": null
},
"right": {
"value": 10,
"left": {
"value": 5,
"left": null,
"right": null
},
"right": null
}
}
*/
final String jsonStr = "{\n"
+ " \"value\": 2,\n"
+ " \"left\": {\n"
+ " \"value\": 1,\n"
+ " \"left\": null,\n"
+ " \"right\": null\n"
+ " },\n" + " \"right\": {\n"
+ " \"value\": 10,\n"
+ " \"left\": {\n"
+ " \"value\": 5,\n"
+ " \"left\": null,\n"
+ " \"right\": null\n"
+ " },\n"
+ " \"right\": null\n"
+ " }\n"
+ "}";
System.out.println(jsonStr);
final BinaryTreeNode<Integer> intTree = objectMapper.readValue(jsonStr,
new TypeReference<BinaryTreeNode<Integer>>() {});
System.out.println(intTree);
}
In other word, I want the BinaryTreeNode to be a first-class citizen the same as ArrayList, which can be used in all kinds of combinations, such as HashSet<BinaryTreeNode<Integer>>, BinaryTreeNode<HashMap<String, Integer>>, etc.
The solution is quite simple, since JSON can express tree naturally, Jackson can deal with recursive tree directly. Just annotate a constructor with JsonCreator:
public static class BinaryTreeNode<E>
{
public E value;
public BinaryTreeNode left;
public BinaryTreeNode right;
#JsonCreator
public BinaryTreeNode(#JsonProperty("value") final E value) {
this.value = value;
}
}
Let's write a unite test to try it:
package me.soulmachine.customized_collection;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.core.type.TypeReference;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.junit.Test;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import static org.junit.Assert.assertEquals;
public class BinaryTreeNodeTest {
public static class BinaryTreeNode<E> {
public E value;
public BinaryTreeNode left;
public BinaryTreeNode right;
#JsonCreator
public BinaryTreeNode(#JsonProperty("value") final E value) {
this.value = value;
}
ArrayList<E> preOrder() {
final ArrayList<E> result = new ArrayList<>();
if (this.value == null) {
return result;
}
preOrder(this, result);
return result;
}
private static <E> void preOrder(BinaryTreeNode<E> root, ArrayList<E> result) {
if (root == null)
return;
result.add(root.value);
if (root.left != null)
preOrder(root.left, result);
if (root.right != null)
preOrder(root.right, result);
}
}
#Test public void binaryTreeNodeTest() throws IOException {
ObjectMapper objectMapper = new ObjectMapper();
/*
2
/ \
1 10
/
5
*/
final String jsonStr = "{\n"
+ " \"value\": 2,\n"
+ " \"left\": {\n"
+ " \"value\": 1,\n"
+ " \"left\": null,\n"
+ " \"right\": null\n"
+ " },\n" + " \"right\": {\n"
+ " \"value\": 10,\n"
+ " \"left\": {\n"
+ " \"value\": 5,\n"
+ " \"left\": null,\n"
+ " \"right\": null\n"
+ " },\n"
+ " \"right\": null\n"
+ " }\n"
+ "}";
System.out.println(jsonStr);
final BinaryTreeNode<Integer> intTree = objectMapper.readValue(jsonStr,
new TypeReference<BinaryTreeNode<Integer>>() {});
final List<Integer> listExpected = Arrays.asList(2, 1, 10, 5);
assertEquals(listExpected, intTree.preOrder());
}
}
A compact serialization format
Well, there is a little problem here, the JSON string above is very verbose. Let's use another kind of serialization format, i.e., serialize a binary tree in level order traversal. For example, the binary tree above can be serialized as the following JSON string:
[2,1,10,null,null,5]
Now how to deserialize this JSON string to a binary tree?
The idea is very similar to my previous article, Deserialize a JSON Array to a Singly Linked List. Just make the BinaryTreeNode implement java.util.list, pretend that it's a list, write our own deserialization code so that Jackson can treat a binary tree as a list.
The complete code of BinaryTreeNode is as the following:
package me.soulmachine.customized_collection;
import java.util.*;
public class BinaryTreeNode<E> extends AbstractSequentialList<E>
implements Cloneable, java.io.Serializable {
public E value;
public BinaryTreeNode<E> left;
public BinaryTreeNode<E> right;
/** has a left child, but it's a null node. */
private transient boolean leftIsNull;
/** has a right child, but it's a null node. */
private transient boolean rightIsNull;
/**
* Constructs an empty binary tree.
*/
public BinaryTreeNode() {
value = null;
left = null;
right = null;
}
/**
* Constructs an binary tree with one element.
*/
public BinaryTreeNode(final E value) {
if (value == null) throw new IllegalArgumentException("null value");
this.value = value;
left = null;
right = null;
}
/**
* Constructs a binary tree containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* #param c the collection whose elements are to be placed into this binary tree
* #throws NullPointerException if the specified collection is null
*/
public BinaryTreeNode(Collection<? extends E> c) {
this();
addAll(c);
}
/**
* #inheritDoc
*
* <p>Note: null in the middle counts, so that each father in the binary tree has a
* one-to-one mapping with the JSON array.</p>
*/
public int size() {
if (value == null) return 0;
Queue<BinaryTreeNode<E>> queue = new LinkedList<>();
queue.add(this);
int count = 0;
while (!queue.isEmpty()) {
final BinaryTreeNode<E> node = queue.remove();
++count;
if (node.left != null) {
queue.add(node.left);
} else {
if (node.leftIsNull) ++count;
}
if (node.right != null) {
queue.add(node.right);
} else {
if (node.rightIsNull) ++count;
}
}
return count;
}
/**
* Tells if the argument is the index of a valid position for an
* iterator or an add operation.
*/
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size();
}
/**
* Constructs an IndexOutOfBoundsException detail message.
* Of the many possible refactorings of the error handling code,
* this "outlining" performs best with both server and client VMs.
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+ size();
}
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private class NodeAndFather {
private BinaryTreeNode<E> node;
private BinaryTreeNode<E> father;
private boolean isRight; // the father is the right child of the father
private NodeAndFather(BinaryTreeNode<E> node, BinaryTreeNode<E> father, boolean isRight) {
this.node = node;
this.father = father;
this.isRight = isRight;
}
}
/**
* Returns the (may be null) Node at the specified element index.
*/
NodeAndFather node(int index) {
checkPositionIndex(index);
if (value == null) return null;
Queue<NodeAndFather> queue = new LinkedList<>();
queue.add(new NodeAndFather(this, null, false));
for (int i = 0; !queue.isEmpty(); ++i) {
final NodeAndFather nodeAndFather = queue.remove();
if ( i == index) {
return nodeAndFather;
}
if (nodeAndFather.node != null) {
queue.add(new NodeAndFather(nodeAndFather.node.left, nodeAndFather.node, false));
queue.add(new NodeAndFather(nodeAndFather.node.right, nodeAndFather.node, true));
}
}
throw new IllegalArgumentException("Illegal index: " + index);
}
/**
* #inheritDoc
*/
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}
private class ListItr implements ListIterator<E> {
private NodeAndFather next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
assert isPositionIndex(index);
next = node(index);
nextIndex = index;
}
public boolean hasNext() {
final BinaryTreeNode<E> cur = next.node;
return cur != null || (next.father.leftIsNull || next.father.rightIsNull);
}
//O(n)
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
final E result = next.node != null ? next.node.value : null;
next = node(nextIndex+1);
nextIndex++;
return result;
}
public boolean hasPrevious() {
throw new UnsupportedOperationException();
}
public E previous() {
throw new UnsupportedOperationException();
}
public int nextIndex() {
throw new UnsupportedOperationException();
}
public int previousIndex() {
throw new UnsupportedOperationException();
}
public void remove() {
throw new UnsupportedOperationException();
}
public void set(E e) {
throw new UnsupportedOperationException();
}
public void add(E e) { // always append at the tail
checkForComodification();
if (next == null) { // empty list
BinaryTreeNode.this.value = e;
BinaryTreeNode.this.left = null;
BinaryTreeNode.this.right = null;
} else {
final BinaryTreeNode<E> newNode = e != null ? new BinaryTreeNode<>(e) : null;
if (next.father == null) { // root
BinaryTreeNode<E> cur = next.node;
cur.left = newNode;
assert cur.right == null;
throw new UnsupportedOperationException();
} else {
if (next.isRight) {
if (next.father.right != null) throw new IllegalStateException();
next.father.right = newNode;
if (newNode == null) {
next.father.rightIsNull = true;
}
} else {
if (next.father.left != null) throw new IllegalStateException();
next.father.left = newNode;
if (newNode == null) {
next.father.leftIsNull = true;
}
}
}
}
modCount++;
expectedModCount++;
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
// the following functions are just for unit tests.
ArrayList<E> preOrder() {
final ArrayList<E> result = new ArrayList<>();
if (this.value == null) {
return result;
}
preOrder(this, result);
return result;
}
private static <E> void preOrder(BinaryTreeNode<E> root, ArrayList<E> result) {
if (root == null)
return;
result.add(root.value);
if (root.left != null)
preOrder(root.left, result);
if (root.right != null)
preOrder(root.right, result);
}
ArrayList<E> inOrder() {
final ArrayList<E> result = new ArrayList<>();
if (this.value == null) {
return result;
}
inOrder(this, result);
return result;
}
private static <E> void inOrder(BinaryTreeNode<E> root, ArrayList<E> result) {
if (root == null)
return;
if (root.left != null)
inOrder(root.left, result);
result.add(root.value);
if (root.right != null)
inOrder(root.right, result);
}
ArrayList<E> postOrder() {
final ArrayList<E> result = new ArrayList<>();
if (this.value == null) {
return result;
}
postOrder(this, result);
return result;
}
private static <E> void postOrder(BinaryTreeNode<E> root, ArrayList<E> result) {
if (root == null)
return;
if (root.left != null)
postOrder(root.left, result);
if (root.right != null)
postOrder(root.right, result);
result.add(root.value);
}
ArrayList<E> levelOrder() {
final ArrayList<E> result = new ArrayList<>();
if (this.value == null) {
return result;
}
Queue<BinaryTreeNode<E>> queue = new LinkedList<>();
queue.add(this);
while (!queue.isEmpty()) {
final BinaryTreeNode<E> node = queue.remove();
result.add(node.value);
if (node.left != null)
queue.add(node.left);
if (node.right != null)
queue.add(node.right);
}
return result;
}
}
Then comes with the unit tests:
java
package me.soulmachine.customized_collection;
import com.fasterxml.jackson.core.type.TypeReference;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.junit.Test;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import static org.junit.Assert.assertEquals;
public class BinaryTreeNodeTest
{
#Test public void deserializeTest() throws IOException {
ObjectMapper objectMapper = new ObjectMapper();
final List<Integer> intList = Arrays.asList(2,1,10,null,null,5);
/*
2
/ \
1 10
/
5
*/
// TODO: the time complexity is O(n^2)
final BinaryTreeNode<Integer> intTree = objectMapper.readValue("[2,1,10,null,null,5]",
new TypeReference<BinaryTreeNode<Integer>>() {});
assertEquals(intList, intTree);
assertEquals(Arrays.asList(2, 1, 10, 5), intTree.levelOrder());
assertEquals(Arrays.asList(2, 1, 10, 5), intTree.preOrder());
assertEquals(Arrays.asList(1, 2, 5, 10), intTree.inOrder());
assertEquals(Arrays.asList(1, 5, 10, 2), intTree.postOrder());
}
}
This article is inspired by Tatu Saloranta from this post, special thanks to him!
Here is my original blog, Deserialize a JSON String to a Binary Tree

compare value equality of objects

I would like to know the best way to compare 2 complex objects to know if they are equal by value, ie, their properties are the same? I tried the serialize method and not sure why they are not equal by value
Dim stream As New MemoryStream()
Dim bstream As New MemoryStream()
Dim clientOne As Jewellery.ClientInfo = New Jewellery.ClientInfo(New Jewellery.Company("a", "", "", "b", "", "e"), New Jewellery.Customer("a", "b", "c", "d", "", "", "", "f"))
Dim clientTwo As Jewellery.ClientInfo = New Jewellery.ClientInfo(New Jewellery.Company("a", "", "", "b", "", "e"), New Jewellery.Customer("a", "b", "c", "d", "", "", "", "f"))
formatter.Serialize(stream, clientOne)
formatter.Serialize(bstream, clientTwo)
Dim streamOneBytes As Byte() = stream.ToArray()
Dim streamTwoBytes As Byte() = bstream.ToArray()
Dim streamToCompareBytes As Byte() = streamToCompare.ToArray()
Dim i As Int16 = 0
Dim flag As Boolean
If streamOneBytes.Length <> streamTwoBytes.Length Then
MsgBox("False")
flag = False
Else
While i < streamOneBytes.Count
If streamOneBytes(i) <> streamTwoBytes(i) Then
flag = "False"
Else : flag = "True"
End If
i = i + 1
End While
End If
As you see in the above code, when I initialize 2 objects of the same type and compare, it works correctly. But when I add one object to say a List and then retrieve and compare to an object of similar type, it fails saying the binary width are different for both. Any advice? Thanks
public class IntegerPropertyEqualityCompare : IEqualityComparer<Main>
{
#region IEqualityComparer<Main> Members
public bool Equals( Main x, Main y )
{
return x.IntegerProperty == y.IntegerProperty;
}
public int GetHashCode( Main obj )
{
return obj.IntegerProperty.GetHashCode() ^ obj.StringProperty.GetHashCode();
}
#endregion
}
public class StringPropertyEqualityCompare : IEqualityComparer<Main>
{
#region IEqualityComparer<Main> Members
public bool Equals( Main x, Main y )
{
return x.StringProperty == y.StringProperty;
}
public int GetHashCode( Main obj )
{
return obj.IntegerProperty.GetHashCode() ^ obj.StringProperty.GetHashCode();
}
#endregion
}
public class AllPropertiesEqualityCompare : IEqualityComparer<Main>
{
#region IEqualityComparer<Main> Members
public bool Equals( Main x, Main y )
{
return ( x.IntegerProperty == y.IntegerProperty ) && ( x.StringProperty == y.StringProperty );
}
public int GetHashCode( Main obj )
{
return obj.IntegerProperty.GetHashCode() ^ obj.StringProperty.GetHashCode();
}
#endregion
}
public abstract class Main
{
public int IntegerProperty { get; set; }
public string StringProperty { get; set; }
public bool Equals( IEqualityComparer<Main> comparer, Main other )
{
return comparer.Equals( this, other );
}
}
public class ConcreteA : Main
{ }
public class ConcreteB : Main
{ }
class TemporaryTest
{
public static void Run()
{
var a = new ConcreteA();
a.IntegerProperty = 1;
a.StringProperty = "some";
var b = new ConcreteB();
b.IntegerProperty = 1;
a.StringProperty = "other";
Console.WriteLine( a.Equals( new IntegerPropertyEqualityCompare(), b ) );
Console.WriteLine( a.Equals( new StringPropertyEqualityCompare(), b ) );
Console.WriteLine( a.Equals( new AllPropertiesEqualityCompare(), b ) );
}
}
Maybe then somthing like this?
I'm not sure that I understand what you want to do.
So I go with IComparable<T>.