What is the difference between an SFM and an SFU? - webrtc

If the question doesn't belong on stackoverflow, sorry for the noise. I couldn't find a better suiting site within stackexchange.
Question
There are definitions of:
Selective Forwarding Middlebox (abbreviated SFM) defined in RFC 7667 Section 3.7
Selective Forwarding Unit (abbreviated SFU) defined in WebRTC Glossary
What is the difference of these things? Are they essentially the same?

They are the same. The usage of SFU in a WebRTC context predates RFC 7667 and is hence a much more commonly used term (ironically the RFC itself still mentions 'SFU' in one place without defining the term).
See also this commit which does a simple replace of SFU with SFM.

Related

CAN-bus bootloader standards

I'm developping an open source OTA update system for a few MCUs of a certain project. I wonder if there is some "standard" protocol for CAN-bus based bootloaders. Everything I saw online and in Application Notes from the chip manufacturers seem to be using their own brand of communication and thus their own specialized upload software too (mainly for demonstration for ANs).
My question is, am I missing something? Is there some standard way of doing this I'd rather adhere to, or should I just roll my own like they do and call it a day?
Features I'm interested in for the protocol side besides the obvious ones: checksumming, digital signatures, authenticated encryption.
Based on your tag, despite I do not see this from your question, I assume for now that you want to develop a boot-loader for automotive ECUs, which have a CAN connection.
The relevant protocols, which provide the services, are ISO 14229-3 or SAE J1939/73, with the first one much more common to my experience.
For development purposes, also ASAM MCD-1 XCP has support for that.
However, these are just the communication services and does not include usual usage patterns, which differ a lot across the OEMs.
For security, the German OEMs put a document together called "HIS Security. Module Specification", which I unfortunately did not find any more on the web.
They also have a blueprint for the design of a boot-loader.
However, this is anyway somewhat outdated, as boot-loaders today often are at least partially based on AUTOSAR, like the applications.
Last from them, you could also get a document partially specifying how the services above are used for flashing an ECU.
If you need further input, feel free to ask.
However, you will need yourself access to the non-free industry standards and recommendations.

Naming conventions: Client, Driver, Actor, Adapter, Broker, Manager, EventEmitter, PubSub, EventBus

I have a mild case of analysis paralysis when it comes to naming.
Suppose we are wrapping some google API. These all seem reasonable:
googleClient
googleDriver
googleActor
googleAdapter
googleBroker
Actor might be more suited to a more concurrent program. But then google API is inherently asynchronous so maybe a good fit.
Suppose the API supports websockets or push messages and it supports methods like .subscribeToEventA(... it might make sense to call it
googleEmitter
googlePubSub
googleEventBus
or even
googleWrapper
The issue being they all seem reasonable and I have no rule of thumb for choosing between them. Is there a general style guide to lean on or a rule of thumb? Maybe some authoritative glossary for terms like these?
Naming things is subjective and so there is no right or wrong answer to what something should be named.
However you can name things based on well established design patterns so readers are more likely to be knowledgeable as to why something is named as it is.
Also key to naming things is to try to be consistent. Once you have settled on a name for a type of entity it's a good idea to add it to a Domain Specific Language (DSL). Having a documented vocabulary for your domain then makes it easier for other authors to use consistent naming conventions in your environment.

Does Perl 6 natively support Design by Contract?

It is listed as a language with native DbC support on the Wikipedia beside Eiffel and Spec#, but I can't find any mention whatsoever in the docs or in the test suite.
2019 Update
Imo, no.
Because I don't think 6.d "implements most DbC features natively" for a reasonable definition of "most" I've removed it from the Wikipedia Design by Contract page.
(If you think it should be put back in the native section despite this SO and my notes above and below, please make sure it appears in alphabetical order.)
I think:
P6 has raw materials that should be reusable to "implement most of DbC".
A natural start would be a userland module. (Which would then naturally fit on the Wikipedia page, but in the Languages with third-party support section).)
A sketch of what I'm thinking follows.
1. ORing preconditions and ANDing postconditions/invariants in the context of routine composition/inheritance/delegation:
Implementing a way to dynamically call (or perhaps just statically refer to) just the PRE statements/blocks and, separately, just the POST statements/blocks, of "relevant ancestor" routines.
Determining "relevant ancestors". For a class hierarchy (or object delegation chain) that doesn't involve multiple dispatch, "relevant ancestors" is presumably easy to determine based on the callsame mechanism. But it feels very different in the general case where there can be many "competing" candidates based on the very different paradigm of multiple dispatch. Are they all "relevant ancestors", such that it's appropriate to combine all their PRE and POST conditions? I currently think not.
Modifying routine selection/dispatch. See eg OO::Actors for what might be a template for how to do so most performantly. The goal is that, per DbC rules, the PRE statements/blocks of a winning routine and its "relevant ancestors" are logically ORed together and POST statements/blocks are logically ANDed.
Supporting class level PRE and POST blocks. One can already write PRE and POST blocks in a class, but they are associated with construction of the class, not subsequent calls to methods within the class. For the latter the following S04 speculation seems to be the ticket:
It is conjectured that PRE and POST submethods in a class could be made to run as if they were phasers in any public method of the class. This feature is awaiting further exploration by means of a ClassHOW extension.
Original answer
Check out Block Phasers, in particular the PRE and POST phasers. I haven't used them, and it's something like 25 years since I read the Eiffel book, but they look the part to me.
The PRE and POST phasers are tested in S04-phasers/pre-post.t. I see at least one bug TODO.
It would be wonderful if you would check out the doc, experiment with them (maybe using an online P6 evaluator), and report back so we can see what you think of them, hear if you encountered the TODO'd bug or any others, and decide what to do:
The Wikipedia page says it lists "Languages that implement most DbC features natively". Presumably the "most" qualifier is subjective. Does P6 implement all (or "most") DbC features natively? If not, it presumably needs to be removed from the Wikipedia page.
Unless we decide the P6 does DbC claim is bogus, we presumably need to add 'DbC' and 'Design by Contract' into the doc and doc index. (Presumably you searched for one or both of those, didn't find a match, and that's what led you to think you couldn't find them, right?)
We also need examples for PRE and POST regardless of whether or not they're officially considered to be DbC features. But we already know that in the sense that P6 has power out the wazoo and much of it still isn't documented as part of official p6doc despite many folk contributing. There's a lot to do! If you can come up with a couple really nice, simple examples using PRE and POST, perhaps developed from what you see in the roast tests, that would be spectacular. :)

A smart UDP protocol analyzer?

Is there a "smart" UDP protocol analyzer that can help me reverse engineer a message based protocol?
I'm using Wireshark to do the sniffing, but if there's a tool that can detect regularities in the protocol (repeated strings, bits of the protocol that are CRC/Checksum or length, ...) and aid the process that would help.
You are asking for a universal inference engine. The best way to try to recover the protocol (assuming you are in a jurisdiction that permits this) is to understand the underlying message transfer from the beginning of a session, and then trying to manually simulate the behaviour of each party through a sequence of ping-pong message trials. This way you develop an understanding of the message structures and their functioning.
Using the UDP frame boundaries is a good place to start looking for structure.
If you have no documentation, you will find that even if you gain a good understanding of the protocol, expect to be surprised many times during the project.
If you can, have your existing systems carry out exactly the scenario you need to use, and then simply replicate the same sequence with payload (and any checksum) changes only. This way you can possibly achieve the requirement without a comprehensive understanding of the protocol.
For an example of the effort in doing this you could look at a historical review of the Samba project at A bit of history and a bit of fun.

What do you consider good API documentation? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 5 years ago.
Improve this question
I have always liked the documentation on Java APIs, generally speaking, but I know some people consider them lacking. So I'm wondering, what do you consider a good example of API documentation?
Please, include a link or an actual example in any answer. I want to have references that I (and others, of course) can use to improve our own documents.
A good documentation MUST have:
datatypes specs - often more essential than actual functions. Do NOT treat this lightly.
function specs (this is obvious). Including What given function does, why it does it (if not obvious), and caveats if any.
an introduction document that binds the whole into a logical entity, explaining the intentions, correct usage patterns and ideas beyond the scope of actual API code. Normally you are given 50 different functions and you don't know which must be used, which shouldn't be used outside of specific cases, which are recommended to more obscure alternatives and why must they be used that way.
examples. Sometimes they are more important than all the rest
I know how to draw an arbitrary shape of arbitrary color in GTK+. I still have no clue why a change of drawing color requires three quite long lines of very obscure, quite unintuitive lines of code. Remembering SVGAlib's setcolorRGB(r,g,b); draw(x1,y1,x2,y2); I find it really hard to comprehend what possessed the authors of GTK+ to complicate things so much. Maybe if they explained the underlying concepts instead of just documenting functions that use them, I'd understand...
Another example: yesterday I got an answer that allowed me to understand SQLite. I understood a function extracting data from a column returns signed long long. I understood the integer columns could be 1,2,4,6 and 8 bytes long. I understood I can define a column as "UNSIGNED INT8", or "TINYINT". I didn't quite get what "affinity" meant, I just knew both had "INTEGER" affinity. I spent hours seeking whether timestamps should be UNSIGNED INTEGER or INT8, whether INT8 is 8-digits or 8-bytes, and what is the name of that esoteric 6-byte int?
What I missed was that "UNSIGNED INT8", "TINYINT" and the like are all a syntactic sugar synonyms for "INTEGER" type (which is always signed long long), and the lengths given are for internal disk storage only, are adjusted automatically and transparently to fit any value on least number of bits and are totally invisible and inaccessible from the API side.
Actually the iPhone (really Mac Cocoa/framework) documentation has gotten pretty good. The features I like are:
Very easy jump to docs from the API.
Well formatted and the code snippets
you would want to copy and paste
(like method signatures) stand out.
Links to projects with sample code
right from the docs.
Automated document refresh mechanism,
but by default docs are all local to
start (so you can live with a flaky
internet connection).
Easy way to switch between variants
of documentation (to see different
versions of the OS), and also select
which sets of documentation to run
searches against.
An overview section explains what the
class is for, followed by a section
breaking out methods grouped by
purpose (methods to create and
object, methods to query for data,
methods to work with type
conversions, etc), followed by the
detailed method explanations.
I also personally really liked Javadoc and the Java system documentation (I used that for many years), I found a benefit there was it was a little easier to make your own custom docs for your own classes that flowed well with the system docs. XCode lets you also use Doxygen to generate documentation for your own classes, but it would take a but more work to format it as well as the system class docs, in part because the system framework documents have more formatting applied.
A good API will have the following characteristics:
Easy to learn
Easy to use, even without documentation
Hard to misuse
Easy to read and maintain code that uses it
Sufficiently powerful to satisfy requirements
Easy to extend
Appropriate to audience
The most common mistake I see in API design is when developers feel auto-generated XML commenting is sufficient, and then precede to auto-generate their API based off of the XML comments. Here's what I'm talking about:
///<summary>
/// Performs ObscureFunction to ObscureClass using ObscureArgument
///</summary>
void ObscureClass.ObscureFunction(ObscureArgument) { ... }
API's like the one above are only counter-productive and frustrate the developer using the API. Good API documentation should give developers hints as to how to use API and give them insight into certain facets of the API they otherwise would not notice.
I personally believe a perfect example of good documentation is PHP's documentation:
For an example:
http://www.php.net/manual/en/function.fopen.php
I think effective documentation includes:
Parameter listing
(Useful) description of the parameter
If they parameters are a string, list
out and EXPLAIN every possible
possible parameter
Return values on both successful
execution and non-successful
execution
Any exceptions/errors it can raise
Examples (THE MOST IMPORTANT imo)
Optionally:
Changelog
Notes/Examples from other users
Whenever I look up something in the PHP documentation I almost know exactly how to use it without having to scour the internet to find "better" examples. Usually the only time which I need to search the internet is when I need to find how to use a set of functions for a specific purpose. Otherwise, I think the PHP documentation is the greatest example of excellent documentation.
What is think is an example of a alright documentation is Python's:
http://docs.python.org/py3k/library/array.html
It lists out the methods but it doesn't do a good job of actually explaining in depth what it is, and how to use it. Especially when you compare it to the PHP docs.
Here is some really bad documentation: Databinder Dispatch. Dispatch is a Scala library for HTTP that abstracts away the (Java) Apache Commons HTTP library.
It uses a lot of functional-syntax magic which not everyone is going to be very clear on, but provides no clear explanation of it, nor the design decisions behind it. The Scaladocs aren't useful because it isn't a traditional Java-style library. To really understand what is going on, you basically have to read the source code and you have to read a load of blog posts with examples.
The documentation succeeds in making me feel stupid and inferior and it certainly doesn't succeed in helping me do what I need to do. The flipside is most of the documentation I see in the Ruby community - both RDoc and in FAQs/websites/etc. Don't just do the Javadoc - you need to provide more comprehensive documentation.
Answer the question: "how do I do X with Y?" You may know the answer. I don't.
My main criteria is - tell me everything I need to know and everything I'll ever want to know.
QT has pretty decent docs:
http://doc.qt.digia.com/4.5/index.html
Win32 MSDN is also pretty good although it didn't age well.
The java docs are horrible to me. They constantly tell me everything I don't want to know and nothing of what I do want to know. The .NET docs has a similar tendency although the problem there is mostly the extreme wordyness, overflow of so much superfluous details and so much god damn pages. Why can't I see both the summary and the methods of a class in the same page?
I like Twitter's documentation. To me a good API is up to date, easy to read and contains examples.
I think that a good API document needs to clearly explain:
What problem this API solves
When you should use it
When you shouldn't use it
Actual code showing "best practice" usage of the API
Not quite API documentation but nevertheless quite useful is the Oracle database documentation, e.g. for the SELECT statement. I like the inclusion of diagrams which helps to clarify the usage for example.
Just a few thoughts...
Examples - win32 API documentation is better than iPhone's because of:
(short) code examples
I vote for any API doc with small and make-sense examples
Don't ever never show "Form1", "asdf", "testing users" in screen shots or sample codes
good API is solving real world problems and there should be some meaningful examples
Don't auto-gen doc
documentation should not be done during writing code (or by the same guy)
doc is for a stranger, whom the programmers usually don't care of
Avoid ___V2 version of API
but it's not a doc issue
Basically, tell the story of the class at the class level. Why is this here? What should it do? What should be in here? Who wrote it?
Tell the story of methods at the method level. What does this do? No matter how accurate your methods names are, 20-30 characters just won't always cut it for descriptiveness.
#author:
Who wrote this? Who's proud of it? Who should be ashamed of their work?
Interface level documentation tells me:
what should this do?
what will it return?
Implementation level documentation tells me:
how does it do it? what kind of algorithm? what sort of system load?
what conditions might cause a problem? will null input cause an issue? are negative numbers okay?
Class level documentation tells me:
what goes here? what kind of methods should I expect to find?
what does this class represent?
#Deprecated tells me:
why is this planned for removal?
when is it expected to be removed?
what is the suggested replacement?
If something is final:
why didn't you want me to extend this?
If something is static:
remind me in the class level doc, at least implicitly.
In general: you're writing these for the next developer to use if and when you hit the lottery. You don't want to feel guilty about quitting and buying a yacht, so pay a bit of attention to clarity, and don't assume you're writing for yourself.
As the side benefit, when someone asks you to work with the same code two years from now and you've forgotten all about it, you're going to benefit massively from good in-code documentation.
First point for a great API-documentation is a good naming of the API itself. The names of methods and parameters should be say all. If the language in question is statically typed, use enums instead of String- or int-constants as parameters, to select between a limited set of choices. Which options are possible can now be seen in the type of the parameter.
The 'soft-part' of documentation (text, not code) should cover border-cases (what happens if I give null as parameter) and the documentation of the class should contain a usage-example.
Good documentation should have at least the following:
When an argument has additional limitations beyond its type, they need to be fully specified.
Description of the [required] state of an object before calling the method.
Description of the state of an object after calling the method.
Full description of error information provided by the method (return values, possible exceptions). Simply naming them is unacceptable.
Good example: Throws ArgumentOutOfRangeException if index is less than 0 -or- index is greater than or equal to Count.
Bad example: Returns 0 for success or one of the following E_INVALIDARG, etc... (without specifying what makes an argument invalid). This is standard "FU developer" approach taken in the PS3 SDK.
In addition, the following are useful:
Description of the state of an object if an exception is thrown by the method.
Best practices regarding classes and groups of classes (say for exceptions in .NET) in the API.
Example usage.
Based on this:
An example of great documentation is the MSDN library.
To be fair, the online version of this does suffer from difficulty of navigation in cases.
An example of terrible documentation is the PS3 SDK. Learning an API requires extensive testing of method arguments for guessing what may or may not be the actual requirements and behavior of any given method.
IMO examples are the best documentation.
I really like the Qt4 Documentation, it first confronts you only with the essential information you need to get things working, and if you want to dig deeper, it reveals all the gory details in subsections.
What I really love, is the fact that they built the whole documentation into Qt Creator, which provides context sensitive help and short examples whenever you need them.
One thing I've always wanted to see in documentation: A "rationale" paragraph for each function or class. Why is this function there? What was it built for? What does it provide that cannot be achieved in any other way? If the answer is "nothing" (and surprisingly frequently it is), what is it a shorthand for, and why is that thing important enough to have its own function?
This paragraph should be easy to write - if it's not, it's probably a sign of a dubious interface.
I have recently come across this documentation (Lift JSON's library), which seems to be a good example of what many people have asked for: nice overview, good example, use cases, intent, etc.
i like my documentation to have a brief overview at the top, with fully featured examples below, and discussions under these! I'm surprised that few include simple function arguments with their required variable types and default values, especially in php!
I'm afraid i can't really give an example because i havent trawled through to find which ones my favourite, however i know this probably doesn't count because its unofficial but Kohana 3.0's Unofficial Wiki By Kerkness is just brilliant! and the Kohana 2.34 documentation is pretty well laid out too, well at least for me. What do you guys think?
Most people have listed the points making up good API documentation, so I am not going to repeat those (data type specs, examples, etc.). I'm just going to provide an example which I think illustrates how it should be done:
Unity Application Block (Go to the Download section for the CHM)
All the people involved in this project have done a great job of documenting it and how it should be used. Apart from the API reference and detailed method description, there are a lot of articles and samples which give you the big picture, the why and how. The projects with such good documentation are rare, at least the ones I use and know about.
The only criteria for documentation quality is that it speeds up development. If you need to know how something works, you go and read docs. One doc is better than another if you've understood everything from first doc faster than from from second.
Any other qualities are subjective. Styles, cross-references, descriptions… I know people who likes to read books. Book-styled doc (with contents/index/etc.) will be good for him. Another my friend likes to doc everything inside code. When he downloads new library, he gets sources and "reads" them instead of docs.
I, personally, like JavaDocs. Like Apple dev docs with the exception of lower-level parts, for example, Obj-C runtime (reference part) is described awfully. Several website APIs have docs I like also.
Don't like MSDN (it's good in general but there are too many variants of the same document, I get lost often).
Documentation is only a part of the big picture, API design. And one could argue the latter is much more important than just the naming. Think of meaningful non-duplicating method names, etc.
I would definitely recommend watching Josh Bloch's presentation about this:
http://www.infoq.com/presentations/effective-api-design OR http://www.youtube.com/watch?v=aAb7hSCtvGw
This covers not only what you're looking for but much more.
Lots of practical, real-world examples are a must. The recent rewrite of jQuery's API documentation is a good example, as well as Django's legendary docs.
The best documentation I've found is Python. You can use sphinx to generate the source documentation into HTML, LaTeX and others, and also generate docs from source files; the API doc you are looking for.
API docs is not only the quality of the final documentation, but also how easy is for the developers and/or technical writers to actually write it, so pick a tool that make the work easier.
Most things about good documentation have already been mentioned, but I think there is one aspect about the JavaDoc way of API documentation that is lacking: making it easy to distinguish between the usage scenarios of all the different classes and interfaces, especially distinguishing between classes that should be used by a library client and those that should not.
Often, JavaDoc is pretty much all you get and usually there is no package documentation page. One is then confronted with a list of hundreds or even more of classes: where and how to start? What are typical ways of using the library?
It would be good if there were conventions of how to make it easy to provide this information as part of JavaDoc. Then the generated API documentation could allow for different views for different groups of people -- at a minimum two groups: those who implement the library and those who use it.
I find Google APIs a beautiful example of Good documentation API.
They have:
Bird's eyes view of the entire APIs structure
Overviews of the main features of the single API
Nice and colored examples for a quick feedback
Detailed references
A blog that keep you updated
A google groups that documents problems and solutions
Videos
FAQ
Articles
Presentations
Code Playground
A search engine to crawl inside a pile of documentation
That's it!
When I play with google APIs documentation site, I feel at home.
Go to the Doxygen site and look at the examples of the HTML that it generates. Those are good:
http://www.doxygen.nl/results.html