How to maintain lookup ability of training data embedded in Tensorflow - pandas

I'm using universal-sentence-encoder to compare similarity of article texts.
module_url = "https://tfhub.dev/google/universal-sentence-encoder/4"
model = hub.load(module_url)
def embed(input):
return model(input)
I then load an array of strings to the model...
articles = [
'article about this thing',
'news about war',
'tabloid british monarchy'
]
trained = trained_model = embed(articles)
This works as expected. I can use cosine similarity to do multiple types of semantic search/matching.
def semantic_search(query, data, vectors):
print("Extracting features...")
query_vec = embed([query])[0].ravel()
res = []
for i, d in enumerate(data):
qvec = vectors[i].ravel()
sim = cosine_similarity(query_vec, qvec)
res.append((sim, d, i))
return sorted(res, key=lambda x : x[0], reverse=True)
The problem is that I can't reference the articles back when I find matches. I need (I think, maybe I'm wrong) some type of ID accompanying the output.
What comes out...
[(0.9202662,
'war in ukraine heats up', 1),
(0.74028295,
'china eyes taiwan', 1776)]
What I need...
[(0.9202662,
'war in ukraine heats up',
<SOME_ID_TO_REFERENCE>),
(0.74028295,
'china eyes taiwan',
<SOME_ID_TO_REFERENCE>)]

Related

What is the most efficient way of creating a tf.dataset from multiple json.gz files with multiple text records?

I have thousands of json.gz files, each with a variety of information about scientific papers. For each file, I have to extract the relevant information - e.g. title and labels - to make a dataset, then transform it to a tf.dataset. However, it is poorly efficient since I cannot filter the subjects directly or shuffle them in a single step.
I would like to read them using tf.dataset.interleave in order to shuffle them, but also to filter them according to specific labels.
Here is how I'm doing it up to now.
import tensorflow as tf
import pandas as pd
#For relevant feature extraction
def load_file(file):
#with gzip.open(bytes.decode(file), 'r') as fin: # 4. gzip
with gzip.open(file, 'r') as fin:
json_bytes = fin.read()
json_str = json_bytes.decode('utf-8') # 2. string (i.e. JSON)
bb = json.loads(json_str)
bb = pd.json_normalize(bb, 'items', ['indexed', ['title', 'publisher', 'type','indexed.date-parts', 'subject']],
errors='ignore')
bb.dropna(subset=['title', 'publisher', 'type','indexed.date-parts', 'subject'], inplace=True)
bb.subject = bb.subject.apply(lambda x: int(themes[list(set(x) & set(list(themes.keys())))[0]]) if len(list(set(x) & set(list(themes.keys()))))>0 else len(list(themes.keys()))+1)
bb.title = bb.title.str.join('').values
#bb['author'] = bb['author'].apply(lambda x: '; '.join([', '.join([i['given'], i['family']]) for i in x]))
bb['indexed.date-parts'] = bb['indexed.date-parts'].apply(lambda tpl: datetime.datetime.strptime('-'.join(str(x) for x in tpl[0]), '%Y-%m-%d').strftime('%Y-%m-%d'))
#bb = bb.sample(n=32, replace=True)
#return bb.title.str.join('').values, bb.subject.str.join(', ').values
return dict(bb[['title', 'publisher', 'type','indexed.date-parts', 'subject' ]])
file_list = ['file_2021_01/10625.json.gz',
'file_2021_01/23897.json.gz',
'file_2021_01/12169.json.gz',
'file_2021_01/427.json.gz',...]
filenames = tf.data.Dataset.list_files(file_list, shuffle=True)
dataset = filenames.apply(
tf.data.experimental.parallel_interleave(
lambda x: tf.data.Dataset.from_tensor_slices(tf.numpy_function(load_file, [x], (tf.int64))), cycle_length=1))
However, it results it a error:
InternalError: Unsupported object type dict
[[{{node PyFunc}}]] [Op:IteratorGetNext]
Thanks

Performing inference with a BERT (TF 1.x) saved model

I'm stuck on one line of code and have been stalled on a project all weekend as a result.
I am working on a project that uses BERT for sentence classification. I have successfully trained the model, and I can test the results using the example code from run_classifier.py.
I can export the model using this example code (which has been reposted repeatedly, so I believe that it's right for this model):
def export(self):
def serving_input_fn():
label_ids = tf.placeholder(tf.int32, [None], name='label_ids')
input_ids = tf.placeholder(tf.int32, [None, self.max_seq_length], name='input_ids')
input_mask = tf.placeholder(tf.int32, [None, self.max_seq_length], name='input_mask')
segment_ids = tf.placeholder(tf.int32, [None, self.max_seq_length], name='segment_ids')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'label_ids': label_ids, 'input_ids': input_ids,
'input_mask': input_mask, 'segment_ids': segment_ids})()
return input_fn
self.estimator._export_to_tpu = False
self.estimator.export_savedmodel(self.output_dir, serving_input_fn)
I can also load the exported estimator (where the export function saves the exported model into a subdirectory labeled with a timestamp):
predict_fn = predictor.from_saved_model(self.output_dir + timestamp_number)
However, for the life of me, I cannot figure out what to provide to predict_fn as input for inference. Here is my best code at the moment:
def predict(self):
input = 'Test input'
guid = 'predict-0'
text_a = tokenization.convert_to_unicode(input)
label = self.label_list[0]
examples = [InputExample(guid=guid, text_a=text_a, text_b=None, label=label)]
features = convert_examples_to_features(examples, self.label_list,
self.max_seq_length, self.tokenizer)
predict_input_fn = input_fn_builder(features, self.max_seq_length, False)
predict_fn = predictor.from_saved_model(self.output_dir + timestamp_number)
result = predict_fn(predict_input_fn) # this generates an error
print(result)
It doesn't seem to matter what I provide to predict_fn: the examples array, the features array, the predict_input_fn function. Clearly, predict_fn wants a dictionary of some type - but every single thing that I've tried generates an exception due to a tensor mismatch or other errors that generally mean: bad input.
I presumed that the from_saved_model function wants the same sort of input as the model test function - apparently, that's not the case.
It seems that lots of people have asked this very question - "how do I use an exported BERT TensorFlow model for inference?" - and have gotten no answers:
Thread #1
Thread #2
Thread #3
Thread #4
Any help? Thanks in advance.
Thank you for this post. Your serving_input_fn was the piece I was missing! Your predict function needs to be changed to feed the features dict directly, rather than use the predict_input_fn:
def predict(sentences):
labels = [0, 1]
input_examples = [
run_classifier.InputExample(
guid="",
text_a = x,
text_b = None,
label = 0
) for x in sentences] # here, "" is just a dummy label
input_features = run_classifier.convert_examples_to_features(
input_examples, labels, MAX_SEQ_LEN, tokenizer
)
# this is where pred_input_fn is replaced
all_input_ids = []
all_input_mask = []
all_segment_ids = []
all_label_ids = []
for feature in input_features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_segment_ids.append(feature.segment_ids)
all_label_ids.append(feature.label_id)
pred_dict = {
'input_ids': all_input_ids,
'input_mask': all_input_mask,
'segment_ids': all_segment_ids,
'label_ids': all_label_ids
}
predict_fn = predictor.from_saved_model('../testing/1589418540')
result = predict_fn(pred_dict)
print(result)
pred_sentences = [
"That movie was absolutely awful",
"The acting was a bit lacking",
"The film was creative and surprising",
"Absolutely fantastic!",
]
predict(pred_sentences)
{'probabilities': array([[-0.3579178 , -1.2010787 ],
[-0.36648935, -1.1814401 ],
[-0.30407643, -1.3386648 ],
[-0.45970002, -0.9982413 ],
[-0.36113673, -1.1936386 ],
[-0.36672896, -1.1808994 ]], dtype=float32), 'labels': array([0, 0, 0, 0, 0, 0])}
However, the probabilities returned for sentences in pred_sentences do not match the probabilities I get use estimator.predict(predict_input_fn) where estimator is the fine-tuned model being used within the same (python) session. For example, [-0.27276006, -1.4324446 ] using estimator vs [-0.26713806, -1.4505868 ] using predictor.

Keras custom layer on ragged tensor to reduce dimensionallity

I'm trying to write a custom layer that will handle variable-length vectors, and reduce them to the same length vector.
The length is known in advance because the reason for the variable lengths is that I have several different data types that I encode using a different number of features.
In a sense, it is similar to Embedding only for numerical values.
I've tried using padding, but the results were bad, so I'm trying this approach instead.
So, for example let's say I have 3 data types, which I encode with 3, 4, 6 length vectors.
arr = [
# example one (data type 1 [len()==3], datat type 3[len()==6]) - force values as floats
[[1.0,2.0,3],[1,2,3,4,5,6]],
# example two (data type 2 [len()==4], datat type 3len()==6]) - force values as floats
[[1.0,2,3,4],[1,2,3,4,5,6]],
]
I tried implementing a custom layer like:
class DimensionReducer(tf.keras.layers.Layer):
def __init__(self, output_dim, expected_lengths):
super(DimensionReducer, self).__init__()
self._supports_ragged_inputs = True
self.output_dim = output_dim
for l in expected_lengths:
setattr(self,f'w_{l}', self.add_weight(shape=(l, self.output_dim),initializer='random_normal',trainable=True))
setattr(self, f'b_{l}',self.add_weight(shape=(self.output_dim,), initializer='random_normal',trainable=True))
def call(self, inputs):
print(inputs.shape)
# batch
if len(inputs.shape) == 3:
print("batch")
result = []
for i,x in enumerate(inputs):
_result = []
for v in x:
l = len(v)
print(l)
print(v)
w = getattr(self, f'w_{l}')
b = getattr(self, f'b_{l}')
out = tf.matmul([v],w) + b
_result.append(out)
result.append(tf.concat(_result, 0))
r = tf.stack(result)
print("batch output:",r.shape)
return r
Which seems to be working when called directly:
dim = DimensionReducer(3, [3,4,6])
dim(tf.ragged.constant(arr))
But when I try to incorporate it into a model, it fails:
import tensorflow as tf
val_ragged = tf.ragged.constant(arr)
inputs_ragged = tf.keras.layers.Input(shape=(None,None), ragged=True)
outputs_ragged = DimensionReducer(3, [3,4,6])(inputs_ragged)
model_ragged = tf.keras.Model(inputs=inputs_ragged, outputs=outputs_ragged)
# this one with RaggedTensor doesn't
print(model_ragged(val_ragged))
With
AttributeError: 'DimensionReducer' object has no attribute 'w_Tensor("dimension_reducer_98/strided_slice:0", shape=(), dtype=int32)'
I'm not sure how am I to implement such a layer, or what I'm doing wrong.

Hierachical Bayesian Linear Regression using PyMC3 is super slow

I am trying to write some code for implementing HBM in the case of logistic regression using the adults dataset from the UCI repository.
I have already written the code, but sampling is super slow, on the order of 107s per sample, for even 64 dimensions or features. Am I doing something wrong?
I am attaching the code for reference. I also rescaled the data thanks to suggestions to try to speed it up, to no avail.
I appreciate any feedback.
The code is a mixture of what has been written here and here.
#re loading the dataset this time without converting the country into one-hot vector rather for hierarchical modeling
adult_df = pd.read_csv('adult.data', header=None, sep=', ', )
adult_df.columns = ["Age", "WorkClass", "fnlwgt", "Education", "EducationNum",
"MaritalStatus", "Occupation", "Relationship", "Race", "Gender",
"CapitalGain", "CapitalLoss", "HoursPerWeek", "NativeCountry", "Income"]
adult_df["Income"] = adult_df["Income"].map({ "<=50K": 0, ">50K": 1 })
adult_df.drop("CapitalGain", axis=1, inplace=True,)
adult_df.drop("CapitalLoss", axis=1, inplace=True,)
adult_df.Age = adult_df.Age.astype(float)
adult_df.fnlwgt = adult_df.fnlwgt.astype(float)
adult_df.EducationNum = adult_df.EducationNum.astype(float)
adult_df.HoursPerWeek = adult_df.HoursPerWeek.astype(float)
# dropping native country here!!
adult_df = pd.get_dummies(adult_df, columns=[
"WorkClass", "Education", "MaritalStatus", "Occupation", "Relationship",
"Race", "Gender",
])
standard_scaler_cols = ["Age", "fnlwgt", "EducationNum", "HoursPerWeek",]
other_cols = list(set(adult_df.columns) - set(standard_scaler_cols))
mapper = DataFrameMapper(
[([col,], StandardScaler(),) for col in standard_scaler_cols] +
[(col, None,) for col in other_cols]
)
le = preprocessing.LabelEncoder()
country_idx = le.fit_transform(adult_df['NativeCountry'])
pd.value_counts(pd.Series(y_all))
y_all = adult_df["Income"].values
adult_df.drop("Income", axis=1, inplace=True,)
adult_df.drop("NativeCountry", axis=1, inplace=True,)
n_countries = len(set(country_idx))
n_features = len(adult_df.columns)
min_max_scaler = preprocessing.MinMaxScaler()
adult_df = min_max_scaler.fit_transform(adult_df)
X_train, X_test, y_train, y_test, country_idx_train, country_idx_test = train_test_split(adult_df, y_all, country_idx, train_size=0.1, test_size=0.25, stratify=y_all, random_state=rs)
with pm.Model() as multilevel_model:
# Hyperiors for intercept
mu_theta = pm.MvNormal(name='mu_a', mu=np.zeros(n_features), cov=np.eye(n_features), shape=n_features)
packed_L_theta = pm.LKJCholeskyCov('packed_L', n=n_features,
eta=2., sd_dist=pm.HalfCauchy.dist(2.5))
L_theta = pm.expand_packed_triangular(n_features, packed_L_theta)
theta = pm.MvNormal(mu=mu_theta, name='mu_theta', chol=L_theta, shape=[n_countries, n_features])
# Hyperiors for intercept (Comment 1)
mu_b = pm.StudentT('mu_b', nu=3, mu=0., sd=1.0)
sigma_b = pm.HalfNormal('sigma_b', sd=1.0)
b = pm.Normal('b', mu=mu_b, sd=sigma_b, shape=[n_countries, 1])
# Calculate predictions given values
# for intercept and slope
yhat = pm.invlogit(b[country_idx_train] + pm.math.dot(theta[country_idx_train], np.asarray(X_train).T))
#Make predictions fit reality
y = pm.Binomial('y', n=np.ones(y_train.shape[0]), p=yhat, observed=y_train)
You will probably have more success on our discourse with pymc3 questions: https://discourse.pymc.io/ I invite you to move your question there.
The first thing I would check is if your Theano is compiling against MKL libraries, or maybe even using Python mode. If you installed things via conda, that should give you MKL, if you're using pip it might be more difficult. http://deeplearning.net/software/theano/troubleshooting.html#test-blas

Interpreting Tensorflow/Tensorboard "subtraction" operation

The following is code adapted from a simple learning example, that I have bent out of shape to understand the Tensorboard graph visualizations:
import tensorflow as tf
import numpy as np
sess = tf.InteractiveSession()
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(10).astype("float32")
y_data = x_data * 0.1 + 0.3
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0, name = "internal_W"), name = "external_W")
b = tf.Variable(2*tf.zeros([1], name = "internal_b"), name = "doubled_b")
y = (W * x_data + b)
l1 = (y - y_data)
l2 = (y_data - y )
writer = tf.train.SummaryWriter("/tmp/test1", sess.graph_def)
init = tf.initialize_all_variables()
# Launch the graph.
sess = tf.Session()
sess.run(init)
print(sess.run(y))
print('---')
print((y_data))
print('---')
print(sess.run(l1))
print('---')
print(sess.run(l2))
A sample output of the print statements is:
[ 0.84253538 0.31011301 0.11627766 0.35491142 0.65550905 0.1798114
0.13632762 0.02010157 0.42960873 0.04218956]
---
[ 0.39195824 0.33384719 0.31269109 0.33873668 0.37154531 0.31962547
0.31487945 0.302194 0.3468895 0.30460477]
---
[ 0.45057714 -0.02373418 -0.19641343 0.01617473 0.28396374 -0.13981406
-0.17855182 -0.28209242 0.08271924 -0.2624152 ]
---
[-0.45057714 0.02373418 0.19641343 -0.01617473 -0.28396374 0.13981406
0.17855182 0.28209242 -0.08271924 0.2624152 ]
Clearly, the subtractions are working properly-- the inputs to the subtraction are in different order, and yield different outputs. However, the graph visualization is:
Notice the "Sub" operators, which appear not to reverse the order of the operands as the code does. (Highlighting either operator yields no additional insight.) Am I missing something obvious, or do the node visualizations completely obscure order of operands?
After futzing around with this, my considered answer to my own question is, "Yes, this is working as intended." The inputs to the nodes show only what the inputs are, not any particular relationships to the operation or the node or themselves; indeed, if one added a variable to itself in an operation node, the input variable would show up only once.
This is not a design choice I would have made, but that does seem to be the intent.
I still encourage others who may have more insight to comment or fully answer.