Analyzing the accuracy of my Federated Learning model - tensorflow

While analyzing the accuracy of my Federated Learning model, I found that my client's accuracy is going high but my global accuracy is not getting high. Can somebody help me on the same that why I am getting such issue.
I am pasting the image that shows the global accuracy and loss and per epoch accuracy and loss.
I am mentioning the code that I am using for finding global accuracy and loss
cce = tf.keras.losses.mean_squared_error
y_pred=model.predict(X_test,batch_size=32)
loss = cce(Y_test, y_pred)
y_pred=[0 if val<0.5 else 1 for val in y_pred]
acc = accuracy_score(Y_test,y_pred)
loss=loss.numpy()
loss1=sum(loss) / len(loss)
print('comm_round: {} | global_acc: {:.3%} | global_loss: {}'.format(communication_round, acc, loss1))
Also I am mentioning the code that I have used to find accuracy of client in each round
local_model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['accuracy'])
Can someone help me on the issue that why there is such a big difference in client's accuracy and global accuracy in my model.
Even after running my code for 500 rounds, I am getting the clients accuracy around 94% but global accuracy around 61%.

I think you need to define your custom evaluating strategy. strategies are the classes that determine how the server will aggregate the new weights, how it will evaluate clients, etc.
The most basic strategy is the FedAvg (for federated average) which I think you are using.
After the final round, the server will perform the last evaluation step with all clients available to verify the model’s performance. That wouldn’t be a problem in a real-life scenario, but this could actually backfire in yours.
You need to perform the evaluation only on the server side and to remove this functionality from the client side. This is done through the evaluate method of the strategy, which you need to override:
You can read more about creating your own FL algorithm here.

Related

TensorFlow: Fit gives great val_acc, but evaluate gives low acc

I have some data (reuters).
I combine the training and test data into one large data set.
I shuffle the entire data set.
I then split the data set into 50%. 50% for training and 50% for testing.
I then setup a sequential model (Embedding, GRU, BatchNormalization, Dense).
I compile with adam optimizer, and loss = sparse_categorical_crossentropy
I run fit on it, for 5 epochs, with validation_split = 0.2
I get a val_acc of 95%. I am very happy with this.
I then call evaluate with the test data, and get acc = 71%
When I repeat evaluate with the train data (instead of test data), just to see what happens, I get 95% acc (as I should).
I am trying to understand what is wrong with my acc score with the test data.
The data is shuffled between train and test each time, so it can not be related to the data.
I tried the checkpoint save/restore trick, that did not seem to help.
I have reduced epochs in case of overfitting, but this has not helped.
I am curious what is going on. The only thing I can think of is there is some sort of overfitting going on that is carrying over to test, but is NOT impacting val_acc.
(Side note: the 20% data saved for validation during fit should not cause an overfitting problem, correct?)
Any ideas what could be wrong with my approach?
Thank you.
Edit 1:
Okey, I might be onto something. I noticed something odd about the test data that is included with the reuters dataset, vs the training data.
In previous experiments, results were always poor evaluating against test set, vs an unused portion of the training data.
This time, I combined the training and test data sets into one set, and shuffled.
Then shuffled some more, and then generated pseudo data around it, and shuffled some more.
Then I peeled off 20% to use as test data.
This time it worked. I got 95% for training, validation and evaluation accuracy.
I tried searching for information on the test set to see if anyone came up with anything but found no results. So I'm going to presently chalk it up to test data that is significantly different from the training set.
Edit 2:
Nevermind edit 1. I think I was corrupting my test data with pseudo-generated version of training data, that was close enough to work.
The only conclusion I can draw is that there is a lot of overfitting going on during my training AND using validation data during training is misleading, as it is also being overfit.
(Why validation data is being used to help overfit, I do not know).
Overfitting occurs due to many reasons, to overcome this problem you can try different methods like:
L1/L2 regularization.
Dropout layers: By using dropout layers in the network, we ignore a subset of units of our network with a set probability. Using dropout, we can reduce interdependent learning among units, which may have led to overfitting.
Early stopping: Monitors the performance of the model for every epoch on a held-out validation set during the training, and terminates the training conditional on the validation performance.
Feature selection: Improves the machine learning process and increases the predictive power of machine learning algorithms by selecting the most important variables and eliminating unnecessary and irrelevant features.
For more details refer to this link.

Small gap between train and test error, does that mean overfitting?

i am working on a dataset of 368609 samples and 34 features, i wanted to use a neural network to predict latency (real value) using keras, the model has 3 hidden layers, each layer has 1024 neurons, i have used drop_out (50 %) and l2 regularization (0.001) for each hidden layer. The problem is i am getting a test mean absolute error of 3.5505 ms and train mean absolute error of 3.4528. Here, the train error is smaller than test error by a small gap, does this mean that we have an overfitting problem here ?
Not really, yet it is still always a good idea to see how your model is generalizing to new data.
Keep something between 10%-20% of your original dataset as a test set and try to predict the output for each record in the test set.
Sometimes when we deal with the same validation set for many attempts of improving our model, we tend to overfit the evaluation dataset as well.
Having 3 different datasets for training, evaluation and testing usually provides a whole solution to overfitting.
If you get a high accuracy on your training set and a low accuracy on you test set it often means that your are overfitting. So in you case - no you are probably not overfitting.
Normally you would also have a validation set, so you don't fit your data to the testset.

Neural network immediately overfitting

I have a FFNN with 2 hidden layers for a regression task that overfits almost immediately (epoch 2-5, depending on # hidden units). (ReLU, Adam, MSE, same # hidden units per layer, tf.keras)
32 neurons:
128 neurons:
I will be tuning the number of hidden units, but to limit the search space I would like to know what the upper and lower bounds should be.
Afaik it is better to have a too large network and try to regularize via L2-reg or dropout than to lower the network's capacity -- because a larger network will have more local minima, but the actual loss value will be better.
Is there any point in trying to regularize (via e.g. dropout) a network that overfits from the get-go?
If so I suppose I could increase both bounds. If not I would lower them.
model = Sequential()
model.add(Dense(n_neurons, 'relu'))
model.add(Dense(n_neurons, 'relu'))
model.add(Dense(1, 'linear'))
model.compile('adam', 'mse')
Hyperparameter tuning is generally the hardest step in ML, In general we try different values randomly and evalute the model and choose those set of values which give the best performance.
Getting back to your question, You have a high varience problem (Good in training, bad in testing).
There are eight things you can do in order
Make sure your test and training distribution are same.
Make sure you shuffle and then split the data into two sets (test and train)
A good train:test split will be 105:15K
Use a deeper network with Dropout/L2 regularization.
Increase your training set size.
Try Early Stopping
Change your loss function
Change the network architecture (Switch to ConvNets, LSTM etc).
Depending on your computation power and time you can set a bound to the number of hidden units and hidden layers you can have.
because a larger network will have more local minima.
Nope, this is not quite true, in reality as the number of input dimension increases the chance of getting stuck into a local minima decreases. So We usually ignore the problem of local minima. It is very rare. The derivatives across all the dimensions in the working space must be zero for a local/global minima. Hence, it is highly unlikely in a typical model.
One more thing, I noticed you are using linear unit for last layer. I suggest you to go for ReLu instead. In general we do not need negative values in regression. It will reduce test/train error
Take this :
In MSE 1/2 * (y_true - y_prediction)^2
because y_prediction can be nagative value. The whole MSE term may blow up to large values as y_prediction gets highly negative or highly positive.
Using a ReLu for last layer makes sure that y_prediction is positive. Hence low error will be expected.
Let me try to substantiate some of the ideas here, referenced from Ian Goodfellow et. al. Deep Learning book which is available for free online:
Chapter 7: Regularization The most important point is data, one can and should avoid regularization if they have large amounts of data that best approximate the distribution. In you case, it looks like there might be a significant discrepancy between training and test data. You need to ensure the data is consistent.
Section 7.4: Data-augmentation With regards to data, Goodfellow talks about data-augmentation and inducing regularization by injecting noise (most likely Gaussian) which mathematically has the same effect. This noise works well with regression tasks as you limit the model from latching onto a single feature to overfit.
Section 7.8: Early Stopping is useful if you just want a model with the best test error. But again this only works if your data allows the training to infer the test data. If there is an immediate increase in test error the training would stop immediately.
Section 7.12: Dropout Just applying dropout to a regression model doesn't necessarily help. In fact "when extremely few labeled training examples are available, dropout is less effective". For classification, dropout forces the model to not rely on single features, but in regression all inputs might be required to compute a value rather than classify.
Chapter 11: Practicals emphasises the use of base models to ensure that the training task is not trivial. If a simple linear regression can achieve similar behaviour than you don't even have a training problem to begin with.
Bottom line is you can't just play with the model and hope for the best. Check the data, understand what is required and then apply the corresponding techniques. For more details read the book, it's very good. Your starting point should be a simple regression model, 1 layer, very few neurons and see what happens. Then incrementally experiment.

[MXNet]Periodic Loss Value when training with "step" learning rate policy

When training deep CNN, a common way is to use SGD with momentum with a "step" learning rate policy (e.g. learning rate set to be 0.1,0.01,0.001.. at different stages of training).But I encounter an unexpected phenomenon when training with this strategy under MXNet.
That is the periodic training loss value
https://user-images.githubusercontent.com/26757001/31327825-356401b6-ad04-11e7-9aeb-3f690bc50df2.png
The above is the training loss at a fixed learning rate 0.01, where the loss is decreasing normally
https://user-images.githubusercontent.com/26757001/31327872-8093c3c4-ad04-11e7-8fbd-327b3916b278.png
However, at the second stage of training (with lr 0.001) , the loss goes up and down periodically, and the period is exactly an epoch
So I thought it might be the problem of data shuffling, but it cannot explain why it doesn't happen in the first stage. Actually I used ImageRecordIter as the DataIter and reset it after every epoch, is there anything I missed or set mistakenly?
train_iter = mx.io.ImageRecordIter(
path_imgrec=recPath,
data_shape=dataShape,
batch_size=batchSize,
last_batch_handle='discard',
shuffle=True,
rand_crop=True,
rand_mirror=True)
The codes for training and loss evaluation:
while True:
train_iter.reset()
for i,databatch in enumerate(train_iter):
globalIter += 1
mod.forward(databatch,is_train=True)
mod.update_metric(metric,databatch.label)
if globalIter % 100 == 0:
loss = metric.get()[1]
metric.reset()
mod.backward()
mod.update()
Actually the loss can converge, but it takes too long.
I've suffered from this problem for a long period of time, on different network and different datasets.
I didn't have this problem when using Caffe. Is this due to the implementation difference?
Your loss/learning curves look suspiciously smooth, and I believe you can observe the same oscillation in the loss even when the learning rate is set to 0.01 just at a smaller relative scale (i.e. if you 'zoomed in' to the chart you'd see the same pattern). You may have an issue with your data iterator passing the same batch for example. And your training loop looks wrong but this could be due to formatting (e.g. mod.update() only performed every 100 batches isn't correct).
You can observe periodicity in your loss when you're traveling across a valley in the loss surface, up and down the sides rather than down the valley. Choosing a lower learning rate can help fix this, and make sure you are using momentum too.

How to interpret increase in both loss and accuracy

I have run deep learning models(CNN's) using tensorflow. Many times during the epoch, i have observed that both loss and accuracy have increased, or both have decreased. My understanding was that both are always inversely related. What could be scenario where both increase or decrease simultaneously.
The loss decreases as the training process goes on, except for some fluctuation introduced by the mini-batch gradient descent and/or regularization techniques like dropout (that introduces random noise).
If the loss decreases, the training process is going well.
The (validation I suppose) accuracy, instead, it's a measure of how good the predictions of your model are.
If the model is learning, the accuracy increases. If the model is overfitting, instead, the accuracy stops to increase and can even start to decrease.
If the loss decreases and the accuracy decreases, your model is overfitting.
If the loss increases and the accuracy increase too is because your regularization techniques are working well and you're fighting the overfitting problem. This is true only if the loss, then, starts to decrease whilst the accuracy continues to increase.
Otherwise, if the loss keep growing your model is diverging and you should look for the cause (usually you're using a too high learning rate value).
I think the top-rated answer is incorrect.
I will assume you are talking about cross-entropy loss, which can be thought of as a measure of 'surprise'.
Loss and accuracy increasing/decreasing simultaneously on the training data tells you nothing about whether your model is overfitting. This can only be determined by comparing loss/accuracy on the validation vs. training data.
If loss and accuracy are both decreasing, it means your model is becoming more confident on its correct predictions, or less confident on its incorrect predictions, or both, hence decreased loss. However, it is also making more incorrect predictions overall, hence the drop in accuracy. Vice versa if both are increasing. That is all we can say.
I'd like to add a possible option here for all those who struggle with a model training right now.
If your validation data is a bit dirty, you might experience that in the beginning of the training the validation loss is low as well as the accuracy, and the more you train your network, the accuracy increases with the loss side by side. The reason why it happens, because it finds the possible outliers of your dirty data and gets a super high loss there. Therefore, your accuracy will grow as it guesses more data right, but the loss grows with it.
This is just what I think based on the math behind the loss and the accuracy,
Note :-
I expect your data is categorical
Your models output :-
[0.1,0.9,0.9009,0.8] (used to calculate loss)
Maxed output :-
[0,0,1,0] (used to calculate acc )
Expected output :-
[0,1,0,0]
Lets clarify what loss and acc calculates :
Loss :- The overall error of y and ypred
Acc :- Just if y and maxed(ypred) is equal
So in a overall our model almost nailed it , resulting in a low loss
But in maxed output no overall is seen its just that they should completely match ,
If they completely match :-
1
else:
0
Thus resulting in a low accuracy too
Try to check mae of the model
remove regularization
check if your are using correct loss
You should check your class index (both train and valid) in training process. It might be sorted in different ways. I have this problem in colab.