how long to train yolov1 without pretrained weights in pascal voc2012? - yolo

Recently I wrote the net by myself. I have trained a whole day but the loss have never go down, it fractured but it didn't decrease overall .So I have no idea whether I make some wrongs in the net or it's normal to takes a long time to train the net without pretrained weights.

Related

Training SSD-MOBILENET V1 and the loss does not deacrease

I'm new in everithing about CNN and tensorflow. Im training a pretrained ssd-mobilenev1-pets.config to detect columns of buildings, about one day but the loss is between 2-1 and doesnt decrease since 10 hours ago.
I realized that my input images are 128x128 and SSD resize de image to 300*300.
Does the size of the input images affect the training?
If that is the case, should I retrain the network with larger input images? or what would be another option to decrease the loss? my train dataset has 660 images and test 166 I dont Know if there are enough images
I really aprecciate your help ....
Loss values of ssd_mobilenet can be different from faster_rcnn. From EdjeElectronics' TensorFlow Object Detection Tutorial:
For my training on the Faster-RCNN-Inception-V2 model, it started at
about 3.0 and quickly dropped below 0.8. I recommend allowing your
model to train until the loss consistently drops below 0.05, which
will take about 40,000 steps, or about 2 hours (depending on how
powerful your CPU and GPU are). Note: The loss numbers will be
different if a different model is used. MobileNet-SSD starts with a
loss of about 20, and should be trained until the loss is consistently
under 2.
For more information: https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10#6-run-the-training
The SSD Mobilnet architecture demands additional training to suffice
the loss accuracy values of the R-CNN model, however, offers
practicality, scalability, and easy accessibility on smaller devices
which reveals the SSD model as a promising candidate for further
assessment (Fleury and Fleury, 2018).
For more information: Fleury, D. & Fleury, A. (2018). Implementation of Regional-CNN and SSD machine learning object detection architectures for the real time analysis of blood borne pathogens in dark field microscopy. MDPI AG.
I would recommend you to take 15%-20% images for testing which cover all the variety present in training data. As you said you have 650+ images for training and 150+ for testing. That is roughly 25% of testing images. It looks like you have enough images to start with. I know the more, the merrier but make sure your model also has sufficient data to learn from!
Resizing the images does not contribute to the loss. It makes sure there is consistency across all images for the model to recognize them without bias. The loss has nothing to do with image resizing as long as every image is resized identically.
You have to make stops and recover checkpoints again and again if you want your model to be perfectly fit. Usually, you can get away with good accuracy by re-training the ssd mobilenet until the loss consistently becomes under 1.Ideally we want the loss to be as lower as possible but we want to make sure the model is not over-fitting. It is all about trial and error. (Loss between 0.5 and 1 seems to be doing the job well but again it all depends on you.)
The reason I think your model is underperforming is due to the fact that you have variety of testing data and not enough training data to suffice.
The model has not been given enough knowledge in training data to make the model learn for new variety of testing data. (For example : Your test data has some images of new angles of buildings which are not sufficiently present in training data). In that case, I recommend you to put variety of all images in training data and then picking images to test making sure you still have sufficient training data of new postures. That's why I recommend you to take 15%-20% test data.

CNN model's val_loss go down well but val_loss change a lot

I'm using keras(tensorflow) to train my own CNN model.
As shown in the chart, the train_loss goes down well, but val_loss has big change among each Epoch.
What can be the reason, and what should I do to improve it?
This is typical behavior when training in deep learning. Think about it, your target loss is the training loss, so it is directly affected by the training process and as you said "goes down well". The validation loss is only affected indirectly, so naturally it will be more volatile in comparison.
When you are training, the model is attempting to estimate the real distribution of the data, however all it got is the distribution of the training dataset to rely on (which is similar but not the same).
The big spike at the end of your loss curve might be the result of over-fitting. If you are not using a decaying learning rate during training, I would suggest it.

Tensorflow Object Detection API - What's actually test.record being used for?

I have a few doubts about Tensorflow Object Detection API. Hopefully someone can help me out... Before that, I need to mention that I am following what sendex is doing. So basically, the steps are come from him.
First doubt: Why we need test.record for training? What it does during training?
Second doubt: Sendex is getting images from test.record to test the newly trained model, doesn't the model already knew that images because they are from test.record?
Third doubt: In what type of occasion we need to activate drop_out (in the .config file)?
1) It does nothing during training, you dont need that during training, but at certain time the model begins to overfit. It means the loss on training images continues to go down but the accuracy on testing images stops improving and begins to decline. This is the time when it is needed to stop traininga nd to recognise this moment you need the test.record.
2) Images were used only to evaluate model during training not to train the net.
3) You do not need to activate it, but using dropout you usually achieve higher accuracy. It prevents the net from overfitting.

Training Resnet deep neural network from scratch

I need to gain some knowledge about deep neural networks.
For a 'ResNet' very deep neural network, we can use transfer learning to train a model.
But Resnet has been trained over the ImageNet dataset. So their pre-trained weights can be used to train the model with another dataset. (for an example training a model for lung cancer detection with CT lung images)
I feels that this approach will be not accurate as the pre-trained weights has been completely trained over other objects but not with medical data.
Instead of transfer learning, is it possible to train the resnet from scratch? (but the available number of images to train the resnet is around 1500) . Is it something possible to do with a normal computer.
Can someone please share your valuable ideas with me
is it possible to train the resnet from scratch?
Yes, it is possible, but the amount of time one needs to get to good accuracy greatly depends on the data. For instance, training original ResNet-50 on a NVIDIA M40 GPU took 14 days (10^18 single precision ops). The most expensive operation in CNN is the convolution in the early layers.
ImageNet contains 14m 226x226x3 images. Since your dataset is ~10000x smaller, each epoch will take ~10000x less ops. On top of that, if you pass gray-scale instead of RGB images, the first convolution will take 3x less ops. Likewise spatial image size affects the training time as well. Training on smaller images can also increase the batch size, which usually speeds things up due to vectorization.
All in all, I estimate that a machine with a single consumer GPU, such as 1080 or 1080ti, can train ~100 epochs of ResNet-50 model in a day. Obviously, training on a 2-GPU machine would be even faster. If that is what you mean by a normal computer, the answer is yes.
But since your dataset is very small, there's a big chance of overfitting. This looks like the biggest issue that your approach faces.

Training object detectors from scratch leads to really bad performance

I am trying to train a Faster-RCNN network with Inception-v3 architecture (reference paper: Google's paper) as my fixed feature extractor using keras on my own dataset (number of classes = 4) which is very different compared to the Image-net. Still I initialized it with Image-net weights because this paper gives evidence that initializing with pre-trained weights is always better compared to random initialization.
Upon Training for 60 Epochs my Training accuracy is at 96% and my validation accuracy is at 84% ,Over-fit! (severe maybe?). But what is more worrying is that my loss did not converge at all. Upon testing the network it failed miserably! like, it didn't even detect.
Then I took a slightly different approach. I did a two step training. First I trained the Inception-v3 on my dataset like a classification problem (Still initialized it with Image-net weights) it converged well. Then I used those weights to initialize the Faster-RCNN network. This worked! But, I am confused why this two staged approach works but Training from scratch didn't work. Given I initialized both the methods with the pre-trained image-net weights initially.
Is there a way to train Faster RCNN from scratch?