Tensorflow op: ParseExampleV2 is super slow - tensorflow

When using native tensorflow for training and prediction/serving, we found that the bottle neck of training/serving speed is on the op of ParseExampleV2 , i.e. the op of transforming a vector of tf.Example protos (as strings) into typed tensors. Time-spent for each tensorflow ops within the graph based on a Logistic Regression model
Is there any solution to that problem?

Related

Save trained gensim word2vec model as a tensorflow SavedModel

Do we have an option to save a trained Gensim Word2Vec model as a saved model using tf 2.0 tf.saved_model.save? In other words, how can I save a trained embedding vector as a saved model signature to work with tensorflow 2.0. The following steps are not correct normally:
model = gensim.models.Word2Vec(...)
model.init_sims(..)
model.train(..)
model.save(..)
module = gensim.models.KeyedVectors.load_word2vec(...)
tf.saved_model.save(
module,
export_dir
)
EDIT:
This example helped me about how to do it : https://keras.io/examples/nlp/pretrained_word_embeddings/
Gensim does not use TensorFlow and it has its own methods for loading and saving models.
You would need to convert Gensim embeddings into a TensorFlow a model which only makes sense if you further plan to use your embeddings within TensorFlow and possibly fine-tune them for your task.
Gensim Word2Vec are two steps in TensorFlow:
Vocabulary lookup: a table that assigns indices to tokens.
Embedding lookup layer that picks up the actual embeddings for the indices.
Then, you can save it as any other TensorFlow model.

Pytorch equivalent features in tensorflow?

I recently was reading a Pytorch code and came across loss.backward() and optimizer.step() functions, are there any equivalent of these using tensorflow/keras?
loss.backward() equivalent in tensorflow is tf.GradientTape(). TensorFlow provides the tf.GradientTape API for automatic differentiation - computing the gradient of computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a tf.GradientTape onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using reverse mode differentiation.
optimizer.step() equivalent in tensorflow is minimize(). Minimizes the loss by updating the variable list. Calling minimize() takes care of both computing the gradients and applying them to the variables.
If you want to process the gradients before applying them you can instead use the optimizer in three steps:
Compute the gradients with tf.GradientTape.
Process the gradients as you wish.
Apply the processed gradients with apply_gradients().
Hope this answers your question. Happy Learning.

Channels dimension index in the input shape while porting Pytorch models to Tensorflow

One of the major problems I've encountered when converting PyTorch models to TensorFlow through ONNX, is slowness, which appears to be related to the input shape, even though I was able to get bit-exact outputs with the two frameworks.
While the PyTorch input shape is B,C,H,W, the Tensorflow input shape is B,H,W,C, where B,C,H,W stand for batch size, channels, height and width, respectively. Technically, I solve the input shape problem easily when working in Tensorflow, using two calls to np.swapaxes:
# Single image, no batch size here yet
image = np.swapaxes(image, 0, 2) # Swapping C and H dimensions - result: C,W,H
image = np.swapaxes(image, 1, 2) # Swapping H and W dimensions - result: C,H,W (like Pytorch)
The slowness problem seems to be related to the differences in the ways the convolutional operations are implemented in PyTorch vs Tensorflow. While PyTorch expects channels first, Tensorflow expects channels last.
As a result, when I visualize the models using Netron, the ONNX model looks abstract and making sense (first image), whereas the Tensorflow .pb formatted model looks like a big mess (second image).
Note: It appears that this problem has already concerned the writers of the onnx2keras library, which supports an experimental feature of changing the C,H,W ordering originated in Pytorch, into H,W,C.
Any idea how to overcome this limitation? Are there other options for more abstractly exporting PyTorch models into Tensorflow?
ONNX (from PyTorch) - you can see the straight flow and the residual blocks:
Tensorflow (imported from the ONNX model) - almost nothing looks like a series of predefined operations:

TensorFlow Graph to Keras Model?

Is it possible to define a graph in native TensorFlow and then convert this graph to a Keras model?
My intention is simply combining (for me) the best of the two worlds.
I really like the Keras model API for prototyping and new experiments, i.e. using the awesome multi_gpu_model(model, gpus=4) for training with multiple GPUs, saving/loading weights or whole models with oneliners, all the convenience functions like .fit(), .predict(), and others.
However, I prefer to define my model in native TensorFlow. Context managers in TF are awesome and, in my opinion, it is much easier to implement stuff like GANs with them:
with tf.variable_scope("Generator"):
# define some layers
with tf.variable_scope("Discriminator"):
# define some layers
# model losses
G_train_op = ...AdamOptimizer(...)
.minimize(gloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Generator")
D_train_op = ...AdamOptimizer(...)
.minimize(dloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Discriminator")
Another bonus is structuring the graph this way. In TensorBoard debugging complicated native Keras models are hell since they are not structured at all. With heavy use of variable scopes in native TF you can "disentangle" the graph and look at a very structured version of a complicated model for debugging.
By utilizing this I can directly setup custom loss function and do not have to freeze anything in every training iteration since TF will only update the weights in the correct scope, which is (at least in my opinion) far easier than the Keras solution to loop over all the existing layers and set .trainable = False.
TL;DR:
Long story short: I like the direct access to everything in TF, but most of the time a simple Keras model is sufficient for training, inference, ... later on. The model API is much easier and more convenient in Keras.
Hence, I would prefer to set up a graph in native TF and convert it to Keras for training, evaluation, and so on. Is there any way to do this?
I don't think it is possible to create a generic automated converter for any TF graph, that will come up with a meaningful set of layers, with proper namings etc. Just because graphs are more flexible than a sequence of Keras layers.
However, you can wrap your model with the Lambda layer. Build your model inside a function, wrap it with Lambda and you have it in Keras:
def model_fn(x):
layer_1 = tf.layers.dense(x, 100)
layer_2 = tf.layers.dense(layer_1, 100)
out_layer = tf.layers.dense(layer_2, num_classes)
return out_layer
model.add(Lambda(model_fn))
That is what sometimes happens when you use multi_gpu_model: You come up with three layers: Input, model, and Output.
Keras Apologetics
However, integration between TensorFlow and Keras can be much more tighter and meaningful. See this tutorial for use cases.
For instance, variable scopes can be used pretty much like in TensorFlow:
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
with tf.name_scope('block1'):
y = LSTM(32, name='mylstm')(x)
The same for manual device placement:
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
y = LSTM(32)(x) # all ops / variables in the LSTM layer will live on GPU:0
Custom losses are discussed here: Keras: clean implementation for multiple outputs and custom loss functions?
This is how my model defined in Keras looks in Tensorboard:
So, Keras is indeed only a simplified frontend to TensorFlow so you can mix them quite flexibly. I would recommend you to inspect source code of Keras model zoo for clever solutions and patterns that allows you to build complex models using clean API of Keras.
You can insert TensorFlow code directly into your Keras model or training pipeline! Since mid-2017, Keras has fully adopted and integrated into TensorFlow. This article goes into more detail.
This means that your TensorFlow model is already a Keras model and vice versa. You can develop in Keras and switch to TensorFlow whenever you need to. TensorFlow code will work with Keras APIs, including Keras APIs for training, inference and saving your model.

Tensorflow: getting calibrated probability output

How do I perform calibration on Tensorflow probability outputs from an Estimator? Is there a way to perform Isotonic regression or Platt scaling using Tensorflow?