How does defining functions within functions work? - kotlin

I am trying to get to know Kotlin through making a Ktor program, and was following the documentation when I noticed this:
fun Application.configureRouting() {
routing {
get("/") {
call.respondText("Hello World!")
}
}
}
How does the routing {} and get("/") {} work? What does it mean? Is routing and get a function being overridden within the Application.configureRouting() function?

I suppose you confused Kotlin's type-safe builders with local functions. It's possible to define a function inside another function (local function) which limits the scope in which we can access the child function.
Here's an example of a local function:
fun foo() {
fun bar() {
println("I'm within a local function.")
}
println("We can call bar only from foo.")
bar()
}
In case of type-safe builders (the routing function of your code), a part of the syntax that enabled this look and feel, is:
According to Kotlin convention, if the last parameter of a function is a function, then a lambda expression passed as the corresponding argument can be placed outside the parentheses.
When the only parameter of a function is of a lambda type, the parentheses can be omitted. Also, adding a receiver to a single lambda parameter will result in a behavior similar to the routing function that you mentioned. If my explanation is not sufficient, you can read more about type-safe builders from the official docs.

Related

Kotlin Higher Order Function in ViewModel

I am new to kotlin , so need help to understand the code ,I went to a blogs and found something like this and implemented in my code , code work perfect but i can't understand the following things .
Basically , I got lost in how lazyDefferd function , how it's works internally.
a. How generic T is passed .
b. What it mean by this CoroutineScope.() as i know this is input that i need to pass from the ViewModel but how it's getting pass i can't understand .
interface MovieRepository {
suspend fun getTopRatedMovie(page:Int): LiveData<out List<TopRatedMovieEntity>>
}
ViewModel :
class TopRatedMovieViewModel(movieRepository: MovieRepository):ViewModel() {
val topMovie by lazyDefferd{
movieRepository.getTopRatedMovie(1)
}
}
fun <T> lazyDefferd(block:suspend CoroutineScope.()->T):Lazy<Deferred<T>>{
return lazy {
GlobalScope.async(start = CoroutineStart.LAZY) {
block.invoke(this)
}
}
}
a. How generic T is passed.
You can pass it explicitly, e.g.:
val myLazyDeffered = lazyDefferd<SomeType> {
// …
}
But the compiler can usually infer the type, so it's more usual to omit it (unless there's a reason why it's not clear from the code).  That's what's happening in your topMovie example: the compiler knows what type the lambda returns, so it infers T from that.
(As you've probably already noted, lazyDefferd() also takes a value parameter, but since it's the last parameter and a lambda, Kotlin lets you omit the parens.)
b. What it mean by this CoroutineScope.()
That's a function literal with receiver.  The lambda that you pass to block will behave as if it's an extension method on the CoroutineScope class: inside the lambda, this will refer to a CoroutineScope instance.  It's similar to passing the instance as a parameter to the lambda (and in this case, that's how it's called), but the syntax is more concise.

what actually param(this.otherParam) means in kotlin? [duplicate]

How is it related to extension functions? Why is with a function, not a keyword?
There appears to be no explicit documentation for this topic, only the assumption of knowledge in reference to extensions.
It is true that there appears to be little existing documentation for the concept of receivers (only a small side note related to extension functions), which is surprising given:
their existence springing out of extension functions;
their role in building a DSL using said extension functions;
the existence of a standard library function with, which given no knowledge of receivers might look like a keyword;
a completely separate syntax for function types.
All these topics have documentation, but nothing goes in-depth on receivers.
First:
What's a receiver?
Any block of code in Kotlin may have a type (or even multiple types) as a receiver, making functions and properties of the receiver available in that block of code without qualifying it.
Imagine a block of code like this:
{ toLong() }
Doesn't make much sense, right? In fact, assigning this to a function type of (Int) -> Long - where Int is the (only) parameter, and the return type is Long - would rightfully result in a compilation error. You can fix this by simply qualifying the function call with the implicit single parameter it. However, for DSL building, this will cause a bunch of issues:
Nested blocks of DSL will have their upper layers shadowed:
html { it.body { // how to access extensions of html here? } ... }
This may not cause issues for a HTML DSL, but may for other use cases.
It can litter the code with it calls, especially for lambdas that use their parameter (soon to be receiver) a lot.
This is where receivers come into play.
By assigning this block of code to a function type that has Int as a receiver (not as a parameter!), the code suddenly compiles:
val intToLong: Int.() -> Long = { toLong() }
Whats going on here?
A little side note
This topic assumes familiarity with function types, but a little side note for receivers is needed.
Function types can also have one receiver, by prefixing it with the type and a dot. Examples:
Int.() -> Long // taking an integer as receiver producing a long
String.(Long) -> String // taking a string as receiver and long as parameter producing a string
GUI.() -> Unit // taking an GUI and producing nothing
Such function types have their parameter list prefixed with the receiver type.
Resolving code with receivers
It is actually incredibly easy to understand how blocks of code with receivers are handled:
Imagine that, similar to extension functions, the block of code is evaluated inside the class of the receiver type. this effectively becomes amended by the receiver type.
For our earlier example, val intToLong: Int.() -> Long = { toLong() } , it effectively results in the block of code being evaluated in a different context, as if it was placed in a function inside Int. Here's a different example using handcrafted types that showcases this better:
class Bar
class Foo {
fun transformToBar(): Bar = TODO()
}
val myBlockOfCodeWithReceiverFoo: (Foo).() -> Bar = { transformToBar() }
effectively becomes (in the mind, not code wise - you cannot actually extend classes on the JVM):
class Bar
class Foo {
fun transformToBar(): Bar = TODO()
fun myBlockOfCode(): Bar { return transformToBar() }
}
val myBlockOfCodeWithReceiverFoo: (Foo) -> Bar = { it.myBlockOfCode() }
Notice how inside of a class, we don't need to use this to access transformToBar - the same thing happens in a block with a receiver.
It just so happens that the documentation on this also explains how to use an outermost receiver if the current block of code has two receivers, via a qualified this.
Wait, multiple receivers?
Yes. A block of code can have multiple receivers, but this currently has no expression in the type system. The only way to achieve this is via multiple higher-order functions that take a single receiver function type. Example:
class Foo
class Bar
fun Foo.functionInFoo(): Unit = TODO()
fun Bar.functionInBar(): Unit = TODO()
inline fun higherOrderFunctionTakingFoo(body: (Foo).() -> Unit) = body(Foo())
inline fun higherOrderFunctionTakingBar(body: (Bar).() -> Unit) = body(Bar())
fun example() {
higherOrderFunctionTakingFoo {
higherOrderFunctionTakingBar {
functionInFoo()
functionInBar()
}
}
}
Do note that if this feature of the Kotlin language seems inappropriate for your DSL, #DslMarker is your friend!
Conclusion
Why does all of this matter? With this knowledge:
you now understand why you can write toLong() in an extension function on a number, instead of having to reference the number somehow. Maybe your extension function shouldn't be an extension?
You can build a DSL for your favorite markup language, maybe help parsing the one or other (who needs regular expressions?!).
You understand why with, a standard library function and not a keyword, exists - the act of amending the scope of a block of code to save on redundant typing is so common, the language designers put it right in the standard library.
(maybe) you learned a bit about function types on the offshoot.
When you call:
"Hello, World!".length()
the string "Hello, World!" whose length you're trying to get is called the receiver.
More generally, any time you write someObject.someFunction(), with a . between the object and the function name, the object is acting as the receiver for the function. This isn't special to Kotlin, and is common to many programming languages that use objects. So the concept of a receiver is likely very familiar to you, even if you haven't heard the term before.
It's called a receiver because you can think of the function call as sending a request which the object will receive.
Not all functions have a receiver. For example, Kotlin's println() function is a top-level function. When you write:
println("Hello, World!")
you don't have to put any object (or .) before the function call. There's no receiver because the println() function doesn't live inside an object.
On the receiving end
Now let's look at what a function call looks like from the point of view of the receiver itself. Imagine we've written a class that displays a simple greeting message:
class Greeter(val name: String) {
fun displayGreeting() {
println("Hello, ${this.name}!")
}
}
To call displayGreeting(), we first create an instance of Greeter, then we can use that object as a receiver to call the function:
val aliceGreeter = Greeter("Alice")
val bobGreeter = Greeter("Bob")
aliceGreeter.displayGreeting() // prints "Hello, Alice!"
bobGreeter.displayGreeting() // prints "Hello, Bob!"
How does the displayGreeting function know which name to display each time? The answer is the keyword this, which always refers to the current receiver.
When we call aliceGreeter.displayGreeting(), the receiver is aliceGreeter, so this.name points to "Alice".
When we call bobGreeter.displayGreeting(), the receiver is bobGreeter, so this.name points to "Bob".
Implicit receivers
Most of the time, there's actually no need to write this. We can replace this.name with just name and it will implicitly point to the name property of the current receiver.
class Greeter(val name: String) {
fun displayGreeting() {
println("Hello, $name!")
}
}
Notice how that differs from accessing a property from outside the class. To print the name from outside, we'd have to write out the full name of the receiver:
println("Hello, ${aliceGreeter.name}")
By writing the function inside the class, we can omit the receiver completely, making the whole thing much shorter. The call to name still has a receiver, we just didn't have to write it out. We can say that we accessed the name property using an implicit receiver.
Member functions of a class often need to access many other functions and properties of their own class, so implicit receivers are very useful. They shorten the code and can make it easier to read and write.
How do receivers relate to extensions?
So far, it seems like a receiver is doing two things for us:
Sending a function call to a specific object, because the function lives inside that object
Allowing a function convenient and and concise access to the other properties and functions that live inside the same object
What if we want to write a function that can use an implicit receiver for convenient access to the properties and functions of an object, but we don't want to (or can't) write our new function inside that object/class? This is where Kotlin's extension functions come in.
fun Greeter.displayAnotherGreeting() {
println("Hello again, $name!")
}
This function doesn't live inside Greeter, but it accesses Greeter as if it was a receiver. Notice the receiver type before the function name, which tells us that this is an extension function. In the body of the extension function, we can once again access name without its receiver, even though we're not actually inside the Greeter class.
You could say that this isn't a "real" receiver, because we're not actually sending the function call to an object. The function lives outside the object. We're just using the syntax and appearance of a receiver because it makes for convenient and concise code. We can call this an extension receiver, to distinguish it from the dispatch receiver that exists for functions that are really inside an object.
Extension functions are called in the same way as member functions, with a receiver object before the function name.
val aliceGreeter = Greeter("Alice")
aliceGreeter.displayAnotherGreeting() // prints "Hello again, Alice!"
Because the function is always called with an object in the receiver position before the function name, it can access that object using the keyword this. Like a member function, an extension function can also leave out this and access the receiver's other properties and functions using the current receiver instance as the implicit receiver.
One of the main reasons extension functions are useful is that the current extension receiver instance can be used as an implicit receiver inside the body of the function.
What does with do?
So far we've seen two ways to make something available as an implicit receiver:
Create a function inside the receiver class
Create an extension function outside the class
Both approaches require creating a function. Can we have the convenience of an implicit receiver without declaring a new function at all?
The answer is to call with:
with(aliceGreeter) {
println("Hello again, $name!")
}
Inside the block body of the call to with(aliceGreeter) { ... }, aliceGreeter is available as an implicit receiver and we can once again access name without its receiver.
So how come with can be implemented as a function, rather than a language feature? How is it possible to simply take an object and magic it into an implicit receiver?
The answer lies with lambda functions. Let's consider our displayAnotherGreeting extension function again. We declared it as a function, but we could instead write it as a lambda:
val displayAnotherGreeting: Greeter.() -> Unit = {
println("Hello again, $name!")
}
We can still call aliceGreeter.displayAnotherGreeting() the same as before, and the code inside the function is the same, complete with implicit receiver. Our extension function has become a lambda with receiver. Note the way the Greeter.() -> Unit function type is written, with the extension receiver Greeter listed before the (empty) parameter list ().
Now, watch what happens when we pass this lambda function as an argument to another function:
fun runLambda(greeter: Greeter, lambda: Greeter.() -> Unit) {
greeter.lambda()
}
The first argument is the object that we want to use as the receiver. The second argument is the lambda function we want to run. All runLambda does is to call the provided lambda parameter, using the greeter parameter as the lambda's receiver.
Substituting the code from our displayAnotherGreeting lambda function into the second argument, we can call runLambda like this:
runLambda(aliceGreeter) {
println("Hello again, $name!")
}
And just like that, we've turned aliceGreeter into an implicit receiver. Kotlin's with function is simply a generic version of this that works with any type.
Recap
When you call someObject.someFunction(), someObject is acting as the receiver that receives the function call
Inside someFunction, someObject is "in scope" as the current receiver instance, and can be accessed as this
When a receiver is in scope, you can leave out the word this and access its properties and functions using an implicit receiver
Extension functions let you benefit from the receiver syntax and implicit receivers without actually dispatching a function call to an object
Kotlin's with function uses a lambda with receiver to make receivers available anywhere, not just inside member functions and extension functions
Kotlin knows the concept of a function literals with receiver. It enables access on visible methods and properties of a receiver of a lambda within its body without having to use any additional qualifier. That's very similar to extension functions in which you can as well access members of the receiver object inside the extension.
A simple example, also one of the greatest functions in the Kotlin standard library, is apply:
public inline fun <T> T.apply(block: T.() -> Unit): T {
block()
return this
}
Here, block is a function literal with receiver. This block parameter is executed by the function and the receiver of apply, T, is returned to the caller. In action this looks as follows:
val foo: Bar = Bar().apply {
color = RED
text = "Foo"
}
We instantiate an object of Bar and call apply on it. The instance of Bar becomes the receiver of apply. The block, passed as an argument in curly brackets does not need to use additional qualifiers to access and modify the properties color and text.
The concept of lambdas with receiver is also the most important feature for writing DSLs with Kotlin.
var greet: String.() -> Unit = { println("Hello $this") }
this defines a variable of type String.() -> Unit, which tells you
String is the receiver
() -> Unit is the function type
Like F. George mentioned above, all methods of this receiver can be called in the method body.
So, in our example, this is used to print the String. The function can be invoked by writing...
greet("Fitzgerald") // result is "Hello Fitzgerald"
the above code snippet was taken from Kotlin Function Literals with Receiver – Quick Introduction by Simon Wirtz.
Simply put ( without any extra words or complications) , the "Receiver" is the type being extended in the extension function or the class name. Using the examples given in answers above
fun Foo.functionInFoo(): Unit = TODO()
Type "Foo" is the "Receiver"
var greet: String.() -> Unit = { println("Hello $this") }
Type "String" is the "Receiver"
Additional tip: Look out for the Class before the fullstop(.) in the "fun" (function) declaration
fun receiver_class.function_name() {
//...
}
Simply put:
the receiver type is the type an extension function extends
the receiver object is the object an extension function is called on; the this keyword inside the function body corresponds to the receiver object
An extension function example:
// `Int` is the receiver type
// `this` is the receiver object
fun Int.squareDouble() = toLong() * this
// a receiver object `8` of type `Int` is passed to the `square` function
val result = 8.square()
A function literal example, which is pretty much the same:
// `Int` is the receiver type
// `this` is the receiver object
val square: Int.() -> Long = { toLong() * this }
// a receiver object `8` of type `Int` is passed to the `square` function
val result1 = 8.square()
val result2 = square(8) // this call is equal to the previous one
The object instance before the . is the receiver. This is in essence the "Scope" you will define this lambda within. This is all you need to know, really, because the functions and properties(varibles, companions e.t.c) you will be using in the lambda will be those provided within this scope.
class Music(){
var track:String=""
fun printTrack():Unit{
println(track)
}
}
//Music class is the receiver of this function, in other words, the lambda can be piled after a Music class just like its extension function Since Music is an instance, refer to it by 'this', refer to lambda parameters by 'it', like always
val track_name:Music.(String)->Unit={track=it;printTrack()}
/*Create an Instance of Music and immediately call its function received by the name 'track_name', and exclusively available to instances of this class*/
Music().track_name("Still Breathing")
//Output
Still Breathing
You define this variable with and all the parameters and return types it will have but among all the constructs defined, only the object instance can call the var, just like it would an extension function and supply to it its constructs, hence "receiving" it.
A receiver would hence be loosely defined as an object for which an extension function is defined using the idiomatic style of lambdas.
Typically in Java or Kotlin you have methods or functions with input parameters of type T. In Kotlin you can also have extension functions that receive a value of type T.
If you have a function that accepts a String parameter for example:
fun hasWhitespace(line: String): Boolean {
for (ch in line) if (ch.isWhitespace()) return true
return false
}
converting the parameter to a receiver (which you can do automatically with IntelliJ):
fun String.hasWhitespace(): Boolean {
for (ch in this) if (ch.isWhitespace()) return true
return false
}
we now have an extension function that receives a String and we can access the value with this

Difference between function receiver and extension function

I was reading about Kotlin and did not quite get the idea
from What I understood extension function gives ability to a class with new functionality without having to inherit from the class
and what is receiver the same except it can be assigned to variable
Is there anything else about it?
Can someone give some examples on it
Extension functions:
Like Swift and C#, Kotlin provides the ability to extend a class with new functionality without having to modify the class or inherit from the class.
You might wonder why? Because we cannot edit and add functions to the language or SDK classes. So we end up creating Util classes in Java. I believe all the projects have a bunch of *Utils classes to put the helper methods that are used at multiple places in the code base. Extensions functions help to fix this Util problem.
How do we write a helper method in Java to find whether the given long value refers to today?
public class DateUtils {
public static boolean isToday(long when) {
// logic ...
}
}
And we call that method by passing the long value as an argument:
void someFunc(long when) {
boolean isToday = DateUtils.isToday(when);
}
In Kotlin, we can extend the Long class to include the isToday() function in it. And we can call the isToday() function on the Long value itself like any other member functions in the class.
// Extension function
fun Long.isToday(): Boolean {
// logic ...
}
fun someFunc(time: Long) {
val isToday = time.isToday()
}
Compared to the Util methods, Kotlin provides a much richer syntax using the Extension functions.
This improves the readability of the code which in turns improves its maintainability. And we get a little help from the code completion of the IDE. So we don't have to remember which Util class to use for the desired function.
Under the hood, Kotlin compiler generates the static helper methods as though we had written them as Java static Util methods. So we get this nice and richer syntax in Kotlin without sacrificing any performance.
Similar to functions, Kotlin also supports extension properties where we can add a property to an existing class.
Higher order functions:
A higher-order function is a function that takes functions as parameters, or returns a function.
Lets look at how a higher order function is written.
fun execute(x: Int, y: Int, op: (Int, Int) -> Int): Int {
return op(x, y)
}
Here the third parameter ( op ) is a function and so it makes this function a higher order function. The type of the parameter op is a function that takes 2 Ints as parameter and returns a Int.
To invoke this Higher order function, we can pass a function or a lambda expression:
execute(5, 5) { a, b -> a + b }
Receiver (or Function literal with Receiver or Lambda with Recevier):
A Higher order function that takes an extension function as its parameter is called Lambda with Receiver.
Let's look at the implementation of the apply function which is available in the Kotlin standard library.
inline fun <T> T.apply(block: T.() -> Unit): T { block(); return this }
The function we pass to this apply function is actually an extension function to the type T. So in the lambda function, we can access the properties and the functions of the type T as though we are writing this function inside class T itself.
Here the generic type T is the receiver and we are passing a lambda function, hence the name Lambda with Receiver.
Another Example:
inline fun SQLiteDatabase.inTransaction(func: SQLiteDatabase.() -> Unit) {
beginTransaction()
try {
func()
setTransactionSuccessful()
} finally {
endTransaction()
}
}
Here, the inTransaction() is an Extension function to the SQLiteDatabase class and the parameter of the inTransaction() function is also an extension function to the SQLiteDatabase class. Here SQLiteDatabase is the receiver, for the lambda that is passed as the argument.
To invoke that function:
db.inTransaction {
delete( ... )
}
Here the delete() is the function of the SQLiteDatabase class and since the lambda we pass is an Extension function to the receiver SQLiteDatabase we can access the delete function without any additional qualifiers with it, as though we are calling the function from inside the SQLiteDatabase class itself.
While #Bob's answer is far more informative on Kotlin than could I hope to be, including extension functions, it doesn't directly refer to the comparison between "function literals with receiver" as described in https://kotlinlang.org/docs/reference/lambdas.html#function-literals-with-receiver and extension functions (https://kotlinlang.org/docs/reference/extensions.html). I.e. the difference between:
val isEven: Int.() -> Boolean = { this % 2 == 0 }
and
fun Int.isEven(): Boolean = this % 2 == 0
The receiver part of the name refers to both of these syntaxes receiving the base Int argument as this.
As I understand it, the difference between the two is simply between one being an expression confirming to a function type and the other a declaration. Functionally they are equivalent and can both be called as:
when { myNumber.isEven() -> doSomething(myNumber) }
but one is intended for use in extension libraries, while the other is typically intended for use as an argument for a function with a function-type parameter, particularly the Kotlin builder DSLs.

What is a "receiver" in Kotlin?

How is it related to extension functions? Why is with a function, not a keyword?
There appears to be no explicit documentation for this topic, only the assumption of knowledge in reference to extensions.
It is true that there appears to be little existing documentation for the concept of receivers (only a small side note related to extension functions), which is surprising given:
their existence springing out of extension functions;
their role in building a DSL using said extension functions;
the existence of a standard library function with, which given no knowledge of receivers might look like a keyword;
a completely separate syntax for function types.
All these topics have documentation, but nothing goes in-depth on receivers.
First:
What's a receiver?
Any block of code in Kotlin may have a type (or even multiple types) as a receiver, making functions and properties of the receiver available in that block of code without qualifying it.
Imagine a block of code like this:
{ toLong() }
Doesn't make much sense, right? In fact, assigning this to a function type of (Int) -> Long - where Int is the (only) parameter, and the return type is Long - would rightfully result in a compilation error. You can fix this by simply qualifying the function call with the implicit single parameter it. However, for DSL building, this will cause a bunch of issues:
Nested blocks of DSL will have their upper layers shadowed:
html { it.body { // how to access extensions of html here? } ... }
This may not cause issues for a HTML DSL, but may for other use cases.
It can litter the code with it calls, especially for lambdas that use their parameter (soon to be receiver) a lot.
This is where receivers come into play.
By assigning this block of code to a function type that has Int as a receiver (not as a parameter!), the code suddenly compiles:
val intToLong: Int.() -> Long = { toLong() }
Whats going on here?
A little side note
This topic assumes familiarity with function types, but a little side note for receivers is needed.
Function types can also have one receiver, by prefixing it with the type and a dot. Examples:
Int.() -> Long // taking an integer as receiver producing a long
String.(Long) -> String // taking a string as receiver and long as parameter producing a string
GUI.() -> Unit // taking an GUI and producing nothing
Such function types have their parameter list prefixed with the receiver type.
Resolving code with receivers
It is actually incredibly easy to understand how blocks of code with receivers are handled:
Imagine that, similar to extension functions, the block of code is evaluated inside the class of the receiver type. this effectively becomes amended by the receiver type.
For our earlier example, val intToLong: Int.() -> Long = { toLong() } , it effectively results in the block of code being evaluated in a different context, as if it was placed in a function inside Int. Here's a different example using handcrafted types that showcases this better:
class Bar
class Foo {
fun transformToBar(): Bar = TODO()
}
val myBlockOfCodeWithReceiverFoo: (Foo).() -> Bar = { transformToBar() }
effectively becomes (in the mind, not code wise - you cannot actually extend classes on the JVM):
class Bar
class Foo {
fun transformToBar(): Bar = TODO()
fun myBlockOfCode(): Bar { return transformToBar() }
}
val myBlockOfCodeWithReceiverFoo: (Foo) -> Bar = { it.myBlockOfCode() }
Notice how inside of a class, we don't need to use this to access transformToBar - the same thing happens in a block with a receiver.
It just so happens that the documentation on this also explains how to use an outermost receiver if the current block of code has two receivers, via a qualified this.
Wait, multiple receivers?
Yes. A block of code can have multiple receivers, but this currently has no expression in the type system. The only way to achieve this is via multiple higher-order functions that take a single receiver function type. Example:
class Foo
class Bar
fun Foo.functionInFoo(): Unit = TODO()
fun Bar.functionInBar(): Unit = TODO()
inline fun higherOrderFunctionTakingFoo(body: (Foo).() -> Unit) = body(Foo())
inline fun higherOrderFunctionTakingBar(body: (Bar).() -> Unit) = body(Bar())
fun example() {
higherOrderFunctionTakingFoo {
higherOrderFunctionTakingBar {
functionInFoo()
functionInBar()
}
}
}
Do note that if this feature of the Kotlin language seems inappropriate for your DSL, #DslMarker is your friend!
Conclusion
Why does all of this matter? With this knowledge:
you now understand why you can write toLong() in an extension function on a number, instead of having to reference the number somehow. Maybe your extension function shouldn't be an extension?
You can build a DSL for your favorite markup language, maybe help parsing the one or other (who needs regular expressions?!).
You understand why with, a standard library function and not a keyword, exists - the act of amending the scope of a block of code to save on redundant typing is so common, the language designers put it right in the standard library.
(maybe) you learned a bit about function types on the offshoot.
When you call:
"Hello, World!".length()
the string "Hello, World!" whose length you're trying to get is called the receiver.
More generally, any time you write someObject.someFunction(), with a . between the object and the function name, the object is acting as the receiver for the function. This isn't special to Kotlin, and is common to many programming languages that use objects. So the concept of a receiver is likely very familiar to you, even if you haven't heard the term before.
It's called a receiver because you can think of the function call as sending a request which the object will receive.
Not all functions have a receiver. For example, Kotlin's println() function is a top-level function. When you write:
println("Hello, World!")
you don't have to put any object (or .) before the function call. There's no receiver because the println() function doesn't live inside an object.
On the receiving end
Now let's look at what a function call looks like from the point of view of the receiver itself. Imagine we've written a class that displays a simple greeting message:
class Greeter(val name: String) {
fun displayGreeting() {
println("Hello, ${this.name}!")
}
}
To call displayGreeting(), we first create an instance of Greeter, then we can use that object as a receiver to call the function:
val aliceGreeter = Greeter("Alice")
val bobGreeter = Greeter("Bob")
aliceGreeter.displayGreeting() // prints "Hello, Alice!"
bobGreeter.displayGreeting() // prints "Hello, Bob!"
How does the displayGreeting function know which name to display each time? The answer is the keyword this, which always refers to the current receiver.
When we call aliceGreeter.displayGreeting(), the receiver is aliceGreeter, so this.name points to "Alice".
When we call bobGreeter.displayGreeting(), the receiver is bobGreeter, so this.name points to "Bob".
Implicit receivers
Most of the time, there's actually no need to write this. We can replace this.name with just name and it will implicitly point to the name property of the current receiver.
class Greeter(val name: String) {
fun displayGreeting() {
println("Hello, $name!")
}
}
Notice how that differs from accessing a property from outside the class. To print the name from outside, we'd have to write out the full name of the receiver:
println("Hello, ${aliceGreeter.name}")
By writing the function inside the class, we can omit the receiver completely, making the whole thing much shorter. The call to name still has a receiver, we just didn't have to write it out. We can say that we accessed the name property using an implicit receiver.
Member functions of a class often need to access many other functions and properties of their own class, so implicit receivers are very useful. They shorten the code and can make it easier to read and write.
How do receivers relate to extensions?
So far, it seems like a receiver is doing two things for us:
Sending a function call to a specific object, because the function lives inside that object
Allowing a function convenient and and concise access to the other properties and functions that live inside the same object
What if we want to write a function that can use an implicit receiver for convenient access to the properties and functions of an object, but we don't want to (or can't) write our new function inside that object/class? This is where Kotlin's extension functions come in.
fun Greeter.displayAnotherGreeting() {
println("Hello again, $name!")
}
This function doesn't live inside Greeter, but it accesses Greeter as if it was a receiver. Notice the receiver type before the function name, which tells us that this is an extension function. In the body of the extension function, we can once again access name without its receiver, even though we're not actually inside the Greeter class.
You could say that this isn't a "real" receiver, because we're not actually sending the function call to an object. The function lives outside the object. We're just using the syntax and appearance of a receiver because it makes for convenient and concise code. We can call this an extension receiver, to distinguish it from the dispatch receiver that exists for functions that are really inside an object.
Extension functions are called in the same way as member functions, with a receiver object before the function name.
val aliceGreeter = Greeter("Alice")
aliceGreeter.displayAnotherGreeting() // prints "Hello again, Alice!"
Because the function is always called with an object in the receiver position before the function name, it can access that object using the keyword this. Like a member function, an extension function can also leave out this and access the receiver's other properties and functions using the current receiver instance as the implicit receiver.
One of the main reasons extension functions are useful is that the current extension receiver instance can be used as an implicit receiver inside the body of the function.
What does with do?
So far we've seen two ways to make something available as an implicit receiver:
Create a function inside the receiver class
Create an extension function outside the class
Both approaches require creating a function. Can we have the convenience of an implicit receiver without declaring a new function at all?
The answer is to call with:
with(aliceGreeter) {
println("Hello again, $name!")
}
Inside the block body of the call to with(aliceGreeter) { ... }, aliceGreeter is available as an implicit receiver and we can once again access name without its receiver.
So how come with can be implemented as a function, rather than a language feature? How is it possible to simply take an object and magic it into an implicit receiver?
The answer lies with lambda functions. Let's consider our displayAnotherGreeting extension function again. We declared it as a function, but we could instead write it as a lambda:
val displayAnotherGreeting: Greeter.() -> Unit = {
println("Hello again, $name!")
}
We can still call aliceGreeter.displayAnotherGreeting() the same as before, and the code inside the function is the same, complete with implicit receiver. Our extension function has become a lambda with receiver. Note the way the Greeter.() -> Unit function type is written, with the extension receiver Greeter listed before the (empty) parameter list ().
Now, watch what happens when we pass this lambda function as an argument to another function:
fun runLambda(greeter: Greeter, lambda: Greeter.() -> Unit) {
greeter.lambda()
}
The first argument is the object that we want to use as the receiver. The second argument is the lambda function we want to run. All runLambda does is to call the provided lambda parameter, using the greeter parameter as the lambda's receiver.
Substituting the code from our displayAnotherGreeting lambda function into the second argument, we can call runLambda like this:
runLambda(aliceGreeter) {
println("Hello again, $name!")
}
And just like that, we've turned aliceGreeter into an implicit receiver. Kotlin's with function is simply a generic version of this that works with any type.
Recap
When you call someObject.someFunction(), someObject is acting as the receiver that receives the function call
Inside someFunction, someObject is "in scope" as the current receiver instance, and can be accessed as this
When a receiver is in scope, you can leave out the word this and access its properties and functions using an implicit receiver
Extension functions let you benefit from the receiver syntax and implicit receivers without actually dispatching a function call to an object
Kotlin's with function uses a lambda with receiver to make receivers available anywhere, not just inside member functions and extension functions
Kotlin knows the concept of a function literals with receiver. It enables access on visible methods and properties of a receiver of a lambda within its body without having to use any additional qualifier. That's very similar to extension functions in which you can as well access members of the receiver object inside the extension.
A simple example, also one of the greatest functions in the Kotlin standard library, is apply:
public inline fun <T> T.apply(block: T.() -> Unit): T {
block()
return this
}
Here, block is a function literal with receiver. This block parameter is executed by the function and the receiver of apply, T, is returned to the caller. In action this looks as follows:
val foo: Bar = Bar().apply {
color = RED
text = "Foo"
}
We instantiate an object of Bar and call apply on it. The instance of Bar becomes the receiver of apply. The block, passed as an argument in curly brackets does not need to use additional qualifiers to access and modify the properties color and text.
The concept of lambdas with receiver is also the most important feature for writing DSLs with Kotlin.
var greet: String.() -> Unit = { println("Hello $this") }
this defines a variable of type String.() -> Unit, which tells you
String is the receiver
() -> Unit is the function type
Like F. George mentioned above, all methods of this receiver can be called in the method body.
So, in our example, this is used to print the String. The function can be invoked by writing...
greet("Fitzgerald") // result is "Hello Fitzgerald"
the above code snippet was taken from Kotlin Function Literals with Receiver – Quick Introduction by Simon Wirtz.
Simply put ( without any extra words or complications) , the "Receiver" is the type being extended in the extension function or the class name. Using the examples given in answers above
fun Foo.functionInFoo(): Unit = TODO()
Type "Foo" is the "Receiver"
var greet: String.() -> Unit = { println("Hello $this") }
Type "String" is the "Receiver"
Additional tip: Look out for the Class before the fullstop(.) in the "fun" (function) declaration
fun receiver_class.function_name() {
//...
}
Simply put:
the receiver type is the type an extension function extends
the receiver object is the object an extension function is called on; the this keyword inside the function body corresponds to the receiver object
An extension function example:
// `Int` is the receiver type
// `this` is the receiver object
fun Int.squareDouble() = toLong() * this
// a receiver object `8` of type `Int` is passed to the `square` function
val result = 8.square()
A function literal example, which is pretty much the same:
// `Int` is the receiver type
// `this` is the receiver object
val square: Int.() -> Long = { toLong() * this }
// a receiver object `8` of type `Int` is passed to the `square` function
val result1 = 8.square()
val result2 = square(8) // this call is equal to the previous one
The object instance before the . is the receiver. This is in essence the "Scope" you will define this lambda within. This is all you need to know, really, because the functions and properties(varibles, companions e.t.c) you will be using in the lambda will be those provided within this scope.
class Music(){
var track:String=""
fun printTrack():Unit{
println(track)
}
}
//Music class is the receiver of this function, in other words, the lambda can be piled after a Music class just like its extension function Since Music is an instance, refer to it by 'this', refer to lambda parameters by 'it', like always
val track_name:Music.(String)->Unit={track=it;printTrack()}
/*Create an Instance of Music and immediately call its function received by the name 'track_name', and exclusively available to instances of this class*/
Music().track_name("Still Breathing")
//Output
Still Breathing
You define this variable with and all the parameters and return types it will have but among all the constructs defined, only the object instance can call the var, just like it would an extension function and supply to it its constructs, hence "receiving" it.
A receiver would hence be loosely defined as an object for which an extension function is defined using the idiomatic style of lambdas.
Typically in Java or Kotlin you have methods or functions with input parameters of type T. In Kotlin you can also have extension functions that receive a value of type T.
If you have a function that accepts a String parameter for example:
fun hasWhitespace(line: String): Boolean {
for (ch in line) if (ch.isWhitespace()) return true
return false
}
converting the parameter to a receiver (which you can do automatically with IntelliJ):
fun String.hasWhitespace(): Boolean {
for (ch in this) if (ch.isWhitespace()) return true
return false
}
we now have an extension function that receives a String and we can access the value with this

Getting access to an instance in a wrapper function

In Kotlin I have this function to wrap a transaction:
fun wrapInTransaction(code: () -> Unit) {
realmInstance.beginTransaction();
code.invoke()
realmInstance.commitTransaction();
}
How can I get access to realmInstance in the invoked code?
The easy solution here is to make code a function with receiver:
fun wrapInTransaction(code: Realm.() -> Unit) {
realmInstance.beginTransaction();
realmInstance.code()
realmInstance.commitTransaction();
}
Inside a lambda which you pass as code you will be able to use this to reference the RealmInstance and to use its members directly as if inside a member function.
Calling realmInstance.code() is just calling code with passing realmInstance as a receiver to it.
The other answers correctly demonstrate how to pass the RealmInstance object to the lambda. In addition, you can make the whole function an extension function which makes the call site a bit prettier:
fun Realm.wrapInTransaction(code: Realm.() -> Unit) {
//this is implicit
beginTransaction();
code()
commitTransaction();
}
The call site will look like this:
Realm.getInstance(this).wrapInTransaction {
createObject(User.class)
}
Change the wrapInTransaction function to accept an extensions method on realmInstance like so:
fun wrapInTransaction(code:Realm.() -> Unit){
realmInstance.beginTransaction();
realmInstance.code()
realmInstance.commitTransaction();
}
Then you can use it like:
wrapInTransaction {
println("realm instance is $this, instanceId: $instanceId")
}
Where for the sake of the example the Realm looks like:
class Realm {
val instanceId = 42
fun beginTransaction() {
}
fun commitTransaction() {
}
}
The above technique is possible thanks to Kotlin's Function Literals with Receiver that make it possible to set the this instance (receiver) within lambda function body. It makes it easy to build type safe builders that reassemble ones from Groovy or Ruby.
This answer provides more samples on the technique.