Why can Hypervisor be defined as a hardware? - virtual-machine

According to Wikipedia:
Hypervisor is computer software, firmware or hardware that creates and
runs virtual machines.
Why does Wikipedia use the word 'hardware' in this definition? As per my understanding Hypervisor is a software thing which may or maybe not require some specific hardware features to run virtual machines.

Related

Why does Hyper-V require hardware virtualization?

I know Hyper-V is type 1 or native hypervisor, meaning it sits on top of hardware and doesn't require an operating system, i.e. talks to the hardware through the ISA interface).
But I don't understand why does it require hardware assisted virtualization? Does it mean Hyper-V is not full native hypervisor because it requires another part (put in hardware)? Does every native hypervisor require hardware virtualization?
Because without hardware virtualization it would have to run an emulation which comes with a BRUTAL performance implication. There is no way to do proper virtualiaztion without either interpreting a significant number of machine code, or have hardware support for this. EVERY native hypervisor requires hardware virtualization - which is, btw., nothing new... it was in the firstp rocessors mit 60s, iirc (196x). Yes, this is that old. VMS - the Mainframe operating system - is acutally short for... "Virtual Machine System". The processors back then had hardware virtualization.

make virtual machine appear a real machine to applications

I am using VmWare Workstation 14 and when I install an operating system (any of them) some programs and apps are able to identify that I am using a virtual machine.
I have seen the vm is using virtualized devices that are really named virtual. like for example VmWare Network Card or etc. Is there any way to install fake real like hardware drivers on these virtual machines? Can this simple change make the app see this vm as a real machine?
How to make this virtual machine appear as a real machine to applications?
Is there really any way?
This was asked as a yes-or-no question so my answer is:
Yes... probably. But it's a lot of work.
There's a 2006 presentation by Tom Liston and Ed Skoudis that talks about this: https://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
It focuses on VMware, but some of it would also apply to other types of Virtual Machine Environments (VMEs).
In summary, they identify as many things as they can find that would allow VM detection, which would each have to be addressed, and they also mention some VMware-specific mitigations for them.
VME artifacts in processes, file system, and/or Windows registry. These would include the VMtools service and "over 50 different references in the file system to 'VMware' and vmx" and "over 300 references in the Registry to 'VMware'", all of which would have to be deleted or changed.
VME artifacts in memory. Specific regions of memory tend to be different in guests (VMs) than hosts, namely the Interrupt Descriptor Table (IDT), Global
Descriptor Table (GDT), and Local Descriptor Table (LDT). The method by which the VM is built may allow these to appear the same in guests as they do in hosts.
VME-specific virtual hardware. This would include the drivers you mention like VmWare Network Card. The drivers would have to be removed or replaced with drivers that do not match the names or code signatures of any virtual drivers. Probably easiest to do on an open-source system, simply by modifying the driver source code and build.
VME-specific processor instructions and capabilities. Some VMEs add non-standard machine language instructions, or modify the behaviour of existing instructions. These can be changed or removed by editing the VME source code, at the cost of convenient host-guest interaction.
VME differences in behaviour. A VM might respond differently on the network, or fail at time synchonization. This could be mitigated with additional source code changes (on both host and guest) to make the network traffic look closer to normal, and providing sufficient CPU cores to the VM would help make sure it does not run more slowly than wall clock time.
Again this is from 2006, so if anyone has a more up-to-date reference, I'd love to see their answer.

Difference between "process virtual machine" with "system virtual machine"

What's the difference between process virtual machine with system virtual machine?
My guess is that process VM is not providing a kind of an operating system for the whole application for that OS, rather providing an environment for some specific application.
And system VM is providing an environment for an OS to be installed just like VirtualBox.
Am I getting it correct?
Another question is the difference between the two different implementation of system VM: hosted vs. stand-alone.
I'm a beginner studying OS, so easy and understandable answer would be greatly appreciated :)
A Process virtual machine, sometimes called an application virtual machine, runs as a normal application inside a host OS and supports a single process. It is created when that process is started and destroyed when it exits. Its purpose is to provide a platform-independent programming environment that abstracts away details of the underlying hardware or operating system, and allows a program to execute in the same way on any platform.
A System virtual machine provides a complete system platform which supports the execution of a complete operating system (OS),Just like you said VirtualBox is one example.
A Host virtual machine is the server component of a virtual machine , which provides computing resources in the underlying hardware to support guest virtual machine (guest VM).
The following is from http://airccse.org/journal/jcsit/5113ijcsit11.pdf :
System Virtual Machines
A System Virtual Machine gives a complete virtual hardware platform with support for execution
of a complete operating system (OS).
The advantage of using System VM are:
Multiple Operating System environments can run in parallel on the same piece of
hardware in strong isolation from each other.
The VM can provide an instruction set architecture (ISA) that is slightly different from
that of the real machine
The main draw backs are:
Since the VM indirectly accesses the same hardware the efficiency is compromised.
Multiply VMs running in parallel on the same physical machine may result in varied
performance depending on the workload imposed on the system. Implementing proper
isolation techniques may address this drawback.

How Java Virtual Machine can work on system without virtualization support?

If hardware support is a must for virtualization, how can Java Virtual Machines run on machines without support for virtualization ? Or is JVM not a virtual machine ?
A JVM is not virtual in the same sense as a VirtualBox or VMWare virtual machine. It is a 'machine' that implements the Java bytecode, not a virtualized version of actual hardware.
The term-of-art 'virtual machine' was coined a very long time ago for the following scenario:
make up a computer, like Knuth's MIX.
write a computer program that implements the made-up computer.
run programs
When this virtual machine runs, it's a completely ordinary program, running completely in user mode. It needs no special help from the hardware or operating system to work reasonably well. This is especially true of the JVM, since the Java byte code does not deal with low-level hardware I/O or other things which are hard to simulate.
Later, historically, (to pick a particular instance), IBM invented VM/370. VM/370 uses the other sense of the term 'virtual machine'. In this later sense, the hardware and operating system cooperate to allow a single physical machine to host multiple virtual instances of (more or less) the same architecture, in which multiple copies of the whole operating system are written as if they are running on more or less bare hardware. Later, the X86 was designed with features to facilitate this.
So, yes, any virtual machine is making use of some physical hardware, unless you implement it with pieces of paper passed around a table (pace John Searle). But when the virtual machine bears no resemblance to the machine it is running on, then there's no need for special help from the operating system and hardware, and no need for anything as complex as VM/370, or VMware.
If hardware support is a must for virtualization, ...
Let me stop you right there :-)
There is a difference in concept between the JVM (software virtualization) and (for example) a VMWare VM (hardware-assisted virtualization).
The JVM (and other software-based VMMs such as the ones that allow to to emulate x86 on Solaris hardware - I think Bochs and possibly DosBox fall into this category) runs like any other application, using the operating system to gain access to the hardware, or emulating its own hardware purely in software.
VMWare, and the other VMMs optimised for speed, rely on hardware support. In other words, they run on the hardware as if they have full access to the hardware and, only when they try to do something they're not supposed to does the OS captures that attempt and fake it.
That's why VMWare runs so much faster than the software-only emulators. It's because, for the vast majority of the time, it's actually running on the real hardware.
The JVM is a virtual machine, but it doesn't require any additional support from the Operating System. Instead of virtualising instructions for a particular CPU it executes java bytecode.
The JVM is a virtual machine for running Java, in other words it emulates a machine which would be capable of running java. It is a confusing choice of names, but it comes from the general meaning of "machine" not from the more common Virtual Machine meaning.
The JVM, like a regular VM emulates the execution of instructions, but in the case of the JVM the instructions being emulated are Java Instructions, and in the case of a VM they are Hardware Instructions as would be executed by an OS running on the same hardware.
Yes the JVM does access hardware, however this is why you install a MAC or WINDOWS JVM since the instructions are translated by the JVM and acted upon depending on the installation of the JVM, for example, open file dialog on mac opens the mac dialog and windows JVM opens the windows dialog.
So its not being virtualized by the system, but the bytecode is being virtualized by the JVM you installed. It's basically like an application that reads something(bytecode) and does something(access hardware, or other stuff).
It should be noted that nothing stipulates that a JVM does not (have to) have HW virtualization access. There are notable exceptions, but to which the answered poster alluded, few CPs exist that run Java bytecode natively. Maybe someday a Java bytecode HAL or TIMI will be commonplace to put the JVM into the same class as the formalized HW virtualization?

What are the benefits of a Hypervisor VM?

I'm looking into using virtual machines to host multiple OSes and I'm looking at the free solutions which there are a lot of them. I'm confused by what a hypervisor is and why are they different or better than a "standard" virtual machine. When I mean standard I going to use the benchmark virtual machine VMWare Server 2.0.
For a dual core system with 4 GB of ram that would be capable of running a max of 3 VMs. Which is the best choice? Hypervisor or non-hypervisor and why? I've already read the Wikipedia article but the technical details are over my head. I need a basic answer of what can these different VM flavors do for me.
My main question relates to how I would do testing on multiple environments. I am concerned about the isolation of OSes so I can test applications on multiple OSes at the same time. Also which flavor gives a closer experience of how a real machine operates?
I'm considering the following:
(hypervisor)
Xen
Hyper-V
(non-hypervisor)
VirtualBox
VMWare Server 2.0
Virtual PC 2007
*The classifications of the VMs I've listed may be incorrect.
The main difference is that Hyper-V doesn't run on top of the OS but instead along with the system it runs on top of a thin layer called hypervisor. Hypervisor is a computer hardware platform virtualization software that allows multiple operating systems to run on a host computer concurrently.
Many other virtualization solution uses other techniques like emulation. For more details see Wikipedia.
Disclaimer, everything below is (broadly) my opinion.
Its helpful to consider a virtual machine monitor (a hypervisor) as a very small microkernel. It has very few jobs beyond accessing the underlying hardware, such as monitoring of event channels and granting guest domains access to specific resources .. while enforcing some kind of scheduler.
All guest machines are completely oblivious of the others, the isolation is true. Guests do not share memory with the privileged guest (or each other). So, in this instance, you could (roughly) think of each guest (even the privileged one) as a process, as far as the VMM is concerned. Typically, the first guest gets extra privileges so that it can manage the rest. This is the ideal technology to use when virtual machines are put into production and exposed to the world.
Additionally, some guests can be patched to become aware of the hypervisor, significantly increasing their performance.
On the other hand we have things like VMWare and QEMU, which rely on the host kernel to give it access to bare metal and enough memory to exist. They assume that all guests need to be presented with a complete machine, the limits put on the process presenting these (more or less) become the limits of the virtual machine. I say more or less because device mapper QoS is not commonly implemented. This is the ideal solution for trying code in some other OS, or some other architecture. A lot of people will call QEMU, Simics or even sometimes VMWare (depending on the product) a 'simulator'.
For production roll outs I use Xen, for testing something I just cross compiled I use QEMU, Simics or VirtualBox.
If you are just testing / rolling new code on various operating systems and architectures, I highly recommend #2. If your need is introspection (i.e. watching guest memory change as bad programs run in a guest) ... I'd need more explanation before answering.
Benefits of Hypervisor:
Hypervisor separates virtual machines logically, assigning each its own slice of underlying computing power, memory, and storage, thus preventing the virtual machines from interfering with each other.