How to compute the mean of weights of multiple models? - tensorflow

Hi i'm a student and i'm working on a Federated Learning problem, but before doing that with the proper tools like OpenFL or Flower, I started a little experiment to try in local to train using this technique.
I managed to train multiple models using IID data, now I'm struggling with the local_update() function that should collect the models and then i need to take all the weights of these models and compute their mean. I read some documentation of Keras and Tensorflow that I'm using for my work, and i found some functions but i can't get it to work properly.
Currently this is my local_update() that's not working
def local_update(self, models):
weights = []
#Take the weights of the models and compute the mean then return the weights to an updated model
for model in models:
for layer in model.layers:
weights = layer.get_weights()
#Compute the mean of weights
weights = np.mean(weights, axis=0)
for layer in self.model.layers:
self.model.set_weights(weights)
return self.model
In TensorFlow/Keras there are many way to do this but what is the best and simplest one?
Thank you in advance for the help!

Related

Keras: Custom loss function with training data not directly related to model

I am trying to convert my CNN written with tensorflow layers to use the keras api in tensorflow (I am using the keras api provided by TF 1.x), and am having issue writing a custom loss function, to train the model.
According to this guide, when defining a loss function it expects the arguments (y_true, y_pred)
https://www.tensorflow.org/guide/keras/train_and_evaluate#custom_losses
def basic_loss_function(y_true, y_pred):
return ...
However, in every example I have seen, y_true is somehow directly related to the model (in the simple case it is the output of the network). In my problem, this is not the case. How do implement this if my loss function depends on some training data that is unrelated to the tensors of the model?
To be concrete, here is my problem:
I am trying to learn an image embedding trained on pairs of images. My training data includes image pairs and annotations of matching points between the image pairs (image coordinates). The input feature is only the image pairs, and the network is trained in a siamese configuration.
I am able to implement this successfully with tensorflow layers and train it sucesfully with tensorflow estimators.
My current implementations builds a tf Dataset from a large database of tf Records, where the features is a dictionary containing the images and arrays of matching points. Before I could easily feed these arrays of image coordinates to the loss function, but here it is unclear how to do so.
There is a hack I often use that is to calculate the loss within the model, by means of Lambda layers. (When the loss is independent from the true data, for instance, and the model doesn't really have an output to be compared)
In a functional API model:
def loss_calc(x):
loss_input_1, loss_input_2 = x #arbirtray inputs, you choose
#according to what you gave to the Lambda layer
#here you use some external data that doesn't relate to the samples
externalData = K.constant(external_numpy_data)
#calculate the loss
return the loss
Using the outputs of the model itself (the tensor(s) that are used in your loss)
loss = Lambda(loss_calc)([model_output_1, model_output_2])
Create the model outputting the loss instead of the outputs:
model = Model(inputs, loss)
Create a dummy keras loss function for compilation:
def dummy_loss(y_true, y_pred):
return y_pred #where y_pred is the loss itself, the output of the model above
model.compile(loss = dummy_loss, ....)
Use any dummy array correctly sized regarding number of samples for training, it will be ignored:
model.fit(your_inputs, np.zeros((number_of_samples,)), ...)
Another way of doing it, is using a custom training loop.
This is much more work, though.
Although you're using TF1, you can still turn eager execution on at the very beginning of your code and do stuff like it's done in TF2. (tf.enable_eager_execution())
Follow the tutorial for custom training loops: https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough
Here, you calculate the gradients yourself, of any result regarding whatever you want. This means you don't need to follow Keras standards of training.
Finally, you can use the approach you suggested of model.add_loss.
In this case, you calculate the loss exaclty the same way I did in the first answer. And pass this loss tensor to add_loss.
You can probably compile a model with loss=None then (not sure), because you're going to use other losses, not the standard one.
In this case, your model's output will probably be None too, and you should fit with y=None.

TensorFlow Graph to Keras Model?

Is it possible to define a graph in native TensorFlow and then convert this graph to a Keras model?
My intention is simply combining (for me) the best of the two worlds.
I really like the Keras model API for prototyping and new experiments, i.e. using the awesome multi_gpu_model(model, gpus=4) for training with multiple GPUs, saving/loading weights or whole models with oneliners, all the convenience functions like .fit(), .predict(), and others.
However, I prefer to define my model in native TensorFlow. Context managers in TF are awesome and, in my opinion, it is much easier to implement stuff like GANs with them:
with tf.variable_scope("Generator"):
# define some layers
with tf.variable_scope("Discriminator"):
# define some layers
# model losses
G_train_op = ...AdamOptimizer(...)
.minimize(gloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Generator")
D_train_op = ...AdamOptimizer(...)
.minimize(dloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Discriminator")
Another bonus is structuring the graph this way. In TensorBoard debugging complicated native Keras models are hell since they are not structured at all. With heavy use of variable scopes in native TF you can "disentangle" the graph and look at a very structured version of a complicated model for debugging.
By utilizing this I can directly setup custom loss function and do not have to freeze anything in every training iteration since TF will only update the weights in the correct scope, which is (at least in my opinion) far easier than the Keras solution to loop over all the existing layers and set .trainable = False.
TL;DR:
Long story short: I like the direct access to everything in TF, but most of the time a simple Keras model is sufficient for training, inference, ... later on. The model API is much easier and more convenient in Keras.
Hence, I would prefer to set up a graph in native TF and convert it to Keras for training, evaluation, and so on. Is there any way to do this?
I don't think it is possible to create a generic automated converter for any TF graph, that will come up with a meaningful set of layers, with proper namings etc. Just because graphs are more flexible than a sequence of Keras layers.
However, you can wrap your model with the Lambda layer. Build your model inside a function, wrap it with Lambda and you have it in Keras:
def model_fn(x):
layer_1 = tf.layers.dense(x, 100)
layer_2 = tf.layers.dense(layer_1, 100)
out_layer = tf.layers.dense(layer_2, num_classes)
return out_layer
model.add(Lambda(model_fn))
That is what sometimes happens when you use multi_gpu_model: You come up with three layers: Input, model, and Output.
Keras Apologetics
However, integration between TensorFlow and Keras can be much more tighter and meaningful. See this tutorial for use cases.
For instance, variable scopes can be used pretty much like in TensorFlow:
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
with tf.name_scope('block1'):
y = LSTM(32, name='mylstm')(x)
The same for manual device placement:
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
y = LSTM(32)(x) # all ops / variables in the LSTM layer will live on GPU:0
Custom losses are discussed here: Keras: clean implementation for multiple outputs and custom loss functions?
This is how my model defined in Keras looks in Tensorboard:
So, Keras is indeed only a simplified frontend to TensorFlow so you can mix them quite flexibly. I would recommend you to inspect source code of Keras model zoo for clever solutions and patterns that allows you to build complex models using clean API of Keras.
You can insert TensorFlow code directly into your Keras model or training pipeline! Since mid-2017, Keras has fully adopted and integrated into TensorFlow. This article goes into more detail.
This means that your TensorFlow model is already a Keras model and vice versa. You can develop in Keras and switch to TensorFlow whenever you need to. TensorFlow code will work with Keras APIs, including Keras APIs for training, inference and saving your model.

Multi-Output Classification with Keras

I am using keras to build a multi-output classification model. My dataset is such as
[x1,x2,x3,x4,y1,y2,y3]
x1,x2,x3 are the features, and y1,y2,y3 are the labels, the y1,y2,y3 are multi-classes.
And I already built a model (I ingore some hidden layers):
def baseline_model(input_dim=23,output_dim=3):
model_in = Input(shape=(input_dim,))
model = Dense(input_dim*5,kernel_initializer='uniform',input_dim=input_dim)(model_in)
model = Activation(activation='relu')(model)
model = Dropout(0.5)(model)
...................
model = Dense(output_dim,kernel_initializer='uniform')(model)
model = Activation(activation='sigmoid')(model)
model = Model(model_in,model)
model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])
return model
And then I try to use the method of keras to make it support classification:
estimator = KerasClassifier(build_fn=baseline_model)
estimator.fit()
estimator.predict(df[0:10])
But I found that the result is not multi-output, only one dimension is output.
[0,0,0,0,0,0,0,0,0,0]
So for the multi-output classification problem, we can not use KerasClassifier function to learn it?
You do not need to wrap the model in KerasClassifier. That wrapper is so that you can use the Keras model with Scikit-Learn. The type of model (classifier, regression, multiclass classifier, etc) is ultimately determined by the shape and activation of the final layer of your model.
You can simply use model.fit() function that is part of Keras. Make sure that you pass the data into the function. You can see more info on the fit function here: https://keras.io/models/model/#fit
Also your loss is setup as binary_crossentropy. For a multi-class problem you will want to use categorical_crossentropy.
model.compile(optimizer='adam',loss='categorical_crossentropy', metrics=['accuracy'])
This model isn't really what Keras refers to as multi-output as far as I can tell. With multi-output you are trying to get the output from several different layers and possibly apply different loss functions to them.
Base on the setup in your question you would be able to use the Keras Sequential model instead of the Functional model if you wanted. Keras recommends using the Sequential model if you can because its simpler. https://keras.io/getting-started/sequential-model-guide/

Implementing stochastic forward passes in part of a neural network in Keras?

my problem is the following:
I am working on an object detection problem and would like to use dropout during test time to obtain a distribution of outputs. The object detection network consists of a training model and a prediction model, which wraps around the training model. I would like to perform several stochastic forward passes using the training model and combine these e.g. by averaging the predictions in the prediction wrapper. Is there a way of doing this in a keras model instead of requiring an intermediate processing step using numpy?
Note that this question is not about how to enable dropout during test time
def prediction_wrapper(model):
# Example code.
# Arguments
# model: the training model
regression = model.outputs[0]
classification = model.outputs[1]
predictions = # TODO: perform several stochastic forward passes (dropout during train and test time) here
avg_predictions = # TODO: combine predictions here, e.g. by computing the mean
outputs = # TODO: do some processing on avg_predictions
return keras.models.Model(inputs=model.inputs, outputs=outputs, name=name)
I use keras with a tensorflow backend.
I appreciate any help!
The way I understand, you're trying to average the weight updates for a single sample while Dropout is enabled. Since dropout is random, you would get different weight updates for the same sample.
If this understanding is correct, then you could create a batch by duplicating the same sample. Here I am assuming that the Dropout is different for each sample in a batch. Since, backpropagation averages the weight updates anyway, you would get your desired behavior.
If that does not work, then you could write a custom loss function and train with a batch-size of one. You could update a global counter inside your custom loss function and return non-zero loss only when you've averaged them the way you want it. I don't know if this would work, it's just an idea.

DeepLearning Anomaly Detection for images

I am still relatively new to the world of Deep Learning. I wanted to create a Deep Learning model (preferably using Tensorflow/Keras) for image anomaly detection. By anomaly detection I mean, essentially a OneClassSVM.
I have already tried sklearn's OneClassSVM using HOG features from the image. I was wondering if there is some example of how I can do this in deep learning. I looked up but couldn't find one single code piece that handles this case.
The way of doing this in Keras is with the KerasRegressor wrapper module (they wrap sci-kit learn's regressor interface). Useful information can also be found in the source code of that module. Basically you first have to define your Network Model, for example:
def simple_model():
#Input layer
data_in = Input(shape=(13,))
#First layer, fully connected, ReLU activation
layer_1 = Dense(13,activation='relu',kernel_initializer='normal')(data_in)
#second layer...etc
layer_2 = Dense(6,activation='relu',kernel_initializer='normal')(layer_1)
#Output, single node without activation
data_out = Dense(1, kernel_initializer='normal')(layer_2)
#Save and Compile model
model = Model(inputs=data_in, outputs=data_out)
#you may choose any loss or optimizer function, be careful which you chose
model.compile(loss='mean_squared_error', optimizer='adam')
return model
Then, pass it to the KerasRegressor builder and fit with your data:
from keras.wrappers.scikit_learn import KerasRegressor
#chose your epochs and batches
regressor = KerasRegressor(build_fn=simple_model, nb_epoch=100, batch_size=64)
#fit with your data
regressor.fit(data, labels, epochs=100)
For which you can now do predictions or obtain its score:
p = regressor.predict(data_test) #obtain predicted value
score = regressor.score(data_test, labels_test) #obtain test score
In your case, as you need to detect anomalous images from the ones that are ok, one approach you can take is to train your regressor by passing anomalous images labeled 1 and images that are ok labeled 0.
This will make your model to return a value closer to 1 when the input is an anomalous image, enabling you to threshold the desired results. You can think of this output as its R^2 coefficient to the "Anomalous Model" you trained as 1 (perfect match).
Also, as you mentioned, Autoencoders are another way to do anomaly detection. For this I suggest you take a look at the Keras Blog post Building Autoencoders in Keras, where they explain in detail about the implementation of them with the Keras library.
It is worth noticing that Single-class classification is another way of saying Regression.
Classification tries to find a probability distribution among the N possible classes, and you usually pick the most probable class as the output (that is why most Classification Networks use Sigmoid activation on their output labels, as it has range [0, 1]). Its output is discrete/categorical.
Similarly, Regression tries to find the best model that represents your data, by minimizing the error or some other metric (like the well-known R^2 metric, or Coefficient of Determination). Its output is a real number/continuous (and the reason why most Regression Networks don't use activations on their outputs). I hope this helps, good luck with your coding.