For loop time complexity (i=1; i<=n*n; i++) [duplicate] - time-complexity

This question already has answers here:
Big O, how do you calculate/approximate it?
(24 answers)
Closed 10 months ago.
The community reviewed whether to reopen this question 10 months ago and left it closed:
Original close reason(s) were not resolved
I have a question regarding time complexity for a for loop.
Would this still be O(n)
for (int i = 1; i <= 2*n; i++) {
//statement;
}
Also would this be O(n2)
for (i = 1; i <= n*n; i++) {
//stament;
}
Tried looking everywhere for this example but couldn’t find one.
Also, why would the counter have an effect of the time complexity if it were incrementing anything other than by 1.

To understand this,first understand what exactly is the time complexity. Time complexity in simple terms is basically how your output grows with the increase in input size. It is not how much time an algorithm takes.
Part-1:
Yes, the complexity Big Oh will still be O(N). One main reason for this is we ignore constants. For example, if we have k*n times where k is any positive number, k will be ignored because it is a constant. And if we talk about O(N) or O(2N), they both show linear growth.
Part-2:
Yes in case of n*n. The complexity will be O(N**2) because if we judge on definition premise, the growth is Quadratic. For every input size, the graph is growing quadratically.
Part-3
Suppose counter is incrementing 2 times instead of 1. Then the complexity will be n / 2 or we can write it ((1/2) * n), 1/2 is constant (k). So, can ignored. Therefore, in this case, time complexity will be O(n).
Hope, this answer your question!

Related

How should I express the complexity of two nested loops [duplicate]

This question already has an answer here:
Determining the big-O runtimes of these different loops?
(1 answer)
Closed 1 year ago.
I know the complexity of two for loops like that is x^2
for(i;i<x;i++){
for(j;j<x;y++){
//code
}
}
but how about the complexity of two for loops while the nested one depends on the value of the first one, like that :
So I know that the time complexity of:
for(i; i<x; i++){
for(y; y<i; y++){
//code
}
}
is the sum of integers of i as in the famous n(n+1)/2
These are O(n2) operations. Twice as big x, four times as much work.
Any pair of nested loops is O(n2) unless one of the two ranges of the loops is limited to a constant value.
About your second example: in the O() lingo, O(n*n/2) is still O(n2):

A interesting question about time complexity

during my classroom i asked this question to my teacher and he couldn't answer that's why i am asking here.
i asked that during a code , what if we have a loop to run from 1 to 10 , does the complexity would be O(1) {big O of 1} . heanswered yes. so here's the question what if i have written a loop to run from 1 to 1 million .is it sill O(1)? or is it O(n) or something else?
pseudo code -
for i in range(1,1 million):
print("hey")
what is the time complexity for that loop
now , if you think the answer is O(n) , how can you say it to be O(n) , because O(n) is when complexity is linear.
and what is the silver lining? when a code gets O(1) and O(n) .
like if i would have written a loop for 10 or 100 or 1000 or 10000 or 100000. when did it transformed from O(1) to O(n).
By definition, O(10000000) and O(1) are equal, Let me quickly explain what complexity means.
What we try to represent with the abstraction of time (and space) complexity isn't how fast a program will run, it what is the growth in runtime (or space) given the growth in input length.
For instance, given a loop with a fixed number of iterations (lets say 10), it doesnt matter if your input will be 1 long or 10000000000000, because your loop will ALWAYS run the same number of iteration therefore, no growth in runtime (even if that 10 iterations may take 1 week to run, it will always be 1 week).
but, if your algorithm's steps are dependent in your input length, that means the longer your input, the longer your algorithm's steps, the question is, how much more steps?
in summary, time (and space) complexity is an abstraction, its not here to tell us how long things will take, its simply here to tell us how the growth in time will be given growth in input, O(1) == O(10000000), because its not about how long it will take, its about the change in the runtime, O(1) algorithm can take 10 years, but it will always take 10 years, even for very large input length.
I think you are confusing the term. Time complexity for a given algorithm is given by the relationship between change in execution time with respect to change in input size.
If you are running a fixed loop from 1 to 10, but doing something in each iteration, then that counts as O(10), or O(1), meaning that it will take the same time each run.
But, as soon as the number of iterations starts depending on the number of elements or tasks, then a loop becomes O(n), meaning that the complexity becomes linear. The more the tasks, proportionally more the time.
I hope that clears some things up. :-)

Time Complexity Of The Below Program

algorithm what (n)
begin
if n = 1 then call A
else
begin
what (n-1);
call B(n)
end
end.
In the above program, I was asked to find the time complexity where procedure A takes O(1) time and procedure B takes O(1/n).
I formed the recurrence relation T(n) = T(n-1) + O(1/n)
And solving it, I got T(n) = O(log n) since we will get harmonic series if we solve it by using back substitution method and time complexity to compute the sum of harmonic series is O(lgn). But the answer is given as O(n). I am not able to figure out how they got that answer. In the explanation they have added a constant times n to the recurrence relation. I didn't get why we should add that constant times n. Please help me in understanding this.
This is likely a trick question set by the author / examiner to catch you out. You must note that the O(1) operations involved in each call to what (pushing arguments to stack etc.) overshadow the O(1/n) complexity of B – at least asymptotically speaking. So the actual time complexity is T(n) = T(n - 1) + O(1), which gives the correct answer.

Longest Common Subsequence

Consider 2 sequences X[1..m] and Y[1..n]. The memoization algorithm would compute the LCS in time O(m*n). Is there any better algorithm to find out LCS wrt time? I guess memoization done diagonally can give us O(min(m,n)) time complexity.
Gene Myers in 1986 came up with a very nice algorithm for this, described here: An O(ND) Difference Algorithm and Its Variations.
This algorithm takes time proportional to the edit distance between sequences, so it is much faster when the difference is small. It works by looping over all possible edit distances, starting from 0, until it finds a distance for which an edit script (in some ways the dual of an LCS) can be constructed. This means that you can "bail out early" if the difference grows above some threshold, which is sometimes convenient.
I believe this algorithm is still used in many diff implementations.
If you know a priori an upper bound on the maximum size k you care about, you can force the LCS algorithm to exit early by adding an extra check in the inner loop. This means then when k << min(m,n) you can get small running times in spite of the fact you are doing LCS.
yes we could create a better algorithm than Order O(m*n)---
i.e O(min(m,n)). to find a length.....
just compare the diagonal elements.and whenever the increment is done suppose it occured in c[2,2] then increment all the value from c[2,2++] and c[2++,2] by 1..
and proceed till c[m,m]..(suppose m

What is Big O notation? Do you use it? [duplicate]

This question already has answers here:
What is a plain English explanation of "Big O" notation?
(43 answers)
Closed 9 years ago.
What is Big O notation? Do you use it?
I missed this university class I guess :D
Does anyone use it and give some real life examples of where they used it?
See also:
Big-O for Eight Year Olds?
Big O, how do you calculate/approximate it?
Did you apply computational complexity theory in real life?
One important thing most people forget when talking about Big-O, thus I feel the need to mention that:
You cannot use Big-O to compare the speed of two algorithms. Big-O only says how much slower an algorithm will get (approximately) if you double the number of items processed, or how much faster it will get if you cut the number in half.
However, if you have two entirely different algorithms and one (A) is O(n^2) and the other one (B) is O(log n), it is not said that A is slower than B. Actually, with 100 items, A might be ten times faster than B. It only says that with 200 items, A will grow slower by the factor n^2 and B will grow slower by the factor log n. So, if you benchmark both and you know how much time A takes to process 100 items, and how much time B needs for the same 100 items, and A is faster than B, you can calculate at what amount of items B will overtake A in speed (as the speed of B decreases much slower than the one of A, it will overtake A sooner or later—this is for sure).
Big O notation denotes the limiting factor of an algorithm. Its a simplified expression of how run time of an algorithm scales with relation to the input.
For example (in Java):
/** Takes an array of strings and concatenates them
* This is a silly way of doing things but it gets the
* point across hopefully
* #param strings the array of strings to concatenate
* #returns a string that is a result of the concatenation of all the strings
* in the array
*/
public static String badConcat(String[] Strings){
String totalString = "";
for(String s : strings) {
for(int i = 0; i < s.length(); i++){
totalString += s.charAt(i);
}
}
return totalString;
}
Now think about what this is actually doing. It is going through every character of input and adding them together. This seems straightforward. The problem is that String is immutable. So every time you add a letter onto the string you have to create a new String. To do this you have to copy the values from the old string into the new string and add the new character.
This means you will be copying the first letter n times where n is the number of characters in the input. You will be copying the character n-1 times, so in total there will be (n-1)(n/2) copies.
This is (n^2-n)/2 and for Big O notation we use only the highest magnitude factor (usually) and drop any constants that are multiplied by it and we end up with O(n^2).
Using something like a StringBuilder will be along the lines of O(nLog(n)). If you calculate the number of characters at the beginning and set the capacity of the StringBuilder you can get it to be O(n).
So if we had 1000 characters of input, the first example would perform roughly a million operations, StringBuilder would perform 10,000, and the StringBuilder with setCapacity would perform 1000 operations to do the same thing. This is rough estimate, but O(n) notation is about orders of magnitudes, not exact runtime.
It's not something I use per say on a regular basis. It is, however, constantly in the back of my mind when trying to figure out the best algorithm for doing something.
A very similar question has already been asked at Big-O for Eight Year Olds?. Hopefully the answers there will answer your question although the question asker there did have a bit of mathematical knowledge about it all which you may not have so clarify if you need a fuller explanation.
Every programmer should be aware of what Big O notation is, how it applies for actions with common data structures and algorithms (and thus pick the correct DS and algorithm for the problem they are solving), and how to calculate it for their own algorithms.
1) It's an order of measurement of the efficiency of an algorithm when working on a data structure.
2) Actions like 'add' / 'sort' / 'remove' can take different amounts of time with different data structures (and algorithms), for example 'add' and 'find' are O(1) for a hashmap, but O(log n) for a binary tree. Sort is O(nlog n) for QuickSort, but O(n^2) for BubbleSort, when dealing with a plain array.
3) Calculations can be done by looking at the loop depth of your algorithm generally. No loops, O(1), loops iterating over all the set (even if they break out at some point) O(n). If the loop halves the search space on each iteration? O(log n). Take the highest O() for a sequence of loops, and multiply the O() when you nest loops.
Yeah, it's more complex than that. If you're really interested get a textbook.
'Big-O' notation is used to compare the growth rates of two functions of a variable (say n) as n gets very large. If function f grows much more quickly than function g we say that g = O(f) to imply that for large enough n, f will always be larger than g up to a scaling factor.
It turns out that this is a very useful idea in computer science and particularly in the analysis of algorithms, because we are often precisely concerned with the growth rates of functions which represent, for example, the time taken by two different algorithms. Very coarsely, we can determine that an algorithm with run-time t1(n) is more efficient than an algorithm with run-time t2(n) if t1 = O(t2) for large enough n which is typically the 'size' of the problem - like the length of the array or number of nodes in the graph or whatever.
This stipulation, that n gets large enough, allows us to pull a lot of useful tricks. Perhaps the most often used one is that you can simplify functions down to their fastest growing terms. For example n^2 + n = O(n^2) because as n gets large enough, the n^2 term gets so much larger than n that the n term is practically insignificant. So we can drop it from consideration.
However, it does mean that big-O notation is less useful for small n, because the slower growing terms that we've forgotten about are still significant enough to affect the run-time.
What we now have is a tool for comparing the costs of two different algorithms, and a shorthand for saying that one is quicker or slower than the other. Big-O notation can be abused which is a shame as it is imprecise enough already! There are equivalent terms for saying that a function grows less quickly than another, and that two functions grow at the same rate.
Oh, and do I use it? Yes, all the time - when I'm figuring out how efficient my code is it gives a great 'back-of-the-envelope- approximation to the cost.
The "Intuitition" behind Big-O
Imagine a "competition" between two functions over x, as x approaches infinity: f(x) and g(x).
Now, if from some point on (some x) one function always has a higher value then the other, then let's call this function "faster" than the other.
So, for example, if for every x > 100 you see that f(x) > g(x), then f(x) is "faster" than g(x).
In this case we would say g(x) = O(f(x)). f(x) poses a sort of "speed limit" of sorts for g(x), since eventually it passes it and leaves it behind for good.
This isn't exactly the definition of big-O notation, which also states that f(x) only has to be larger than C*g(x) for some constant C (which is just another way of saying that you can't help g(x) win the competition by multiplying it by a constant factor - f(x) will always win in the end). The formal definition also uses absolute values. But I hope I managed to make it intuitive.
It may also be worth considering that the complexity of many algorithms is based on more than one variable, particularly in multi-dimensional problems. For example, I recently had to write an algorithm for the following. Given a set of n points, and m polygons, extract all the points that lie in any of the polygons. The complexity is based around two known variables, n and m, and the unknown of how many points are in each polygon. The big O notation here is quite a bit more involved than O(f(n)) or even O(f(n) + g(m)).
Big O is good when you are dealing with large numbers of homogenous items, but don't expect this to always be the case.
It is also worth noting that the actual number of iterations over the data is often dependent on the data. Quicksort is usually quick, but give it presorted data and it slows down. My points and polygons alogorithm ended up quite fast, close to O(n + (m log(m)), based on prior knowledge of how the data was likely to be organised and the relative sizes of n and m. It would fall down badly on randomly organised data of different relative sizes.
A final thing to consider is that there is often a direct trade off between the speed of an algorithm and the amount of space it uses. Pigeon hole sorting is a pretty good example of this. Going back to my points and polygons, lets say that all my polygons were simple and quick to draw, and I could draw them filled on screen, say in blue, in a fixed amount of time each. So if I draw my m polygons on a black screen it would take O(m) time. To check if any of my n points was in a polygon, I simply check whether the pixel at that point is green or black. So the check is O(n), and the total analysis is O(m + n). Downside of course is that I need near infinite storage if I'm dealing with real world coordinates to millimeter accuracy.... ...ho hum.
It may also be worth considering amortized time, rather than just worst case. This means, for example, that if you run the algorithm n times, it will be O(1) on average, but it might be worse sometimes.
A good example is a dynamic table, which is basically an array that expands as you add elements to it. A naïve implementation would increase the array's size by 1 for each element added, meaning that all the elements need to be copied every time a new one is added. This would result in a O(n2) algorithm if you were concatenating a series of arrays using this method. An alternative is to double the capacity of the array every time you need more storage. Even though appending is an O(n) operation sometimes, you will only need to copy O(n) elements for every n elements added, so the operation is O(1) on average. This is how things like StringBuilder or std::vector are implemented.
What is Big O notation?
Big O notation is a method of expressing the relationship between many steps an algorithm will require related to the size of the input data. This is referred to as the algorithmic complexity. For example sorting a list of size N using Bubble Sort takes O(N^2) steps.
Do I use Big O notation?
I do use Big O notation on occasion to convey algorithmic complexity to fellow programmers. I use the underlying theory (e.g. Big O analysis techniques) all of the time when I think about what algorithms to use.
Concrete Examples?
I have used the theory of complexity analysis to create algorithms for efficient stack data structures which require no memory reallocation, and which support average time of O(N) for indexing. I have used Big O notation to explain the algorithm to other people. I have also used complexity analysis to understand when linear time sorting O(N) is possible.
From Wikipedia.....
Big O notation is useful when analyzing algorithms for efficiency. For example, the time (or the number of steps) it takes to complete a problem of size n might be found to be T(n) = 4n² − 2n + 2.
As n grows large, the n² term will come to dominate, so that all other terms can be neglected — for instance when n = 500, the term 4n² is 1000 times as large as the 2n term. Ignoring the latter would have negligible effect on the expression's value for most purposes.
Obviously I have never used it..
You should be able to evaluate an algorithm's complexity. This combined with a knowledge of how many elements it will take can help you to determine if it is ill suited for its task.
It says how many iterations an algorithm has in the worst case.
to search for an item in an list, you can traverse the list until you got the item. In the worst case, the item is in the last place.
Lets say there are n items in the list. In the worst case you take n iterations. In the Big O notiation it is O(n).
It says factualy how efficient an algorithm is.