I am using a cmake generator expression to read a target property
set_tests_properties(
Java-wrapper
PROPERTIES
ENVIRONMENT _JAVA_OPTIONS=-Djava.library.path=$<TARGET_PROPERTY:ktx-jni,LIBRARY_OUTPUT_DIRECTORY>
)
LIBRARY_OUTPUT_DIRECTORY is itself defined using a generator expression
set_target_properties(ktx-jni PROPERTIES
LIBRARY_OUTPUT_DIRECTORY ${KTX_BUILD_DIR}/$<CONFIG>
)
During build LIBRARY_OUTPUT_DIRECTORY is expanded correctly and the built library appears in Debug or Release as expected. However in the environment seen by the test $<CONFIG> is not expanded.
Picked up _JAVA_OPTIONS: -Djava.library.path=/Users/mark/Projects/khronos/github/KTX-Software/build/macos/$<CONFIG>
If instead I use
ENVIRONMENT _JAVA_OPTIONS=-Djava.library.path=${KTX_BUILD_DIR}/$<CONFIG>
$<CONFIG> is expanded correctly and the test runs successfully.
How can I get cmake to recursively expand LIBRARY_OUTPUT_DIRECTORY?
I found the solution, use TARGET_GENEX_EVAL, as in the below.
ENVIRONMENT _JAVA_OPTIONS=-Djava.library.path=$<TARGET_GENEX_EVAL:ktx-jni,$<TARGET_PROPERTY:ktx-jni,LIBRARY_OUTPUT_DIRECTORY>>
I missed it before because it is listed under String Transformations not Target Dependent Queries in the cmake documentation.
Related
Not sure how to perfectly word this from the title, but I am new to CMake and slowly progressing through the online tutorial.
I am up to Step 4 and sometimes find it confusing when mixing passed values that in my eyes are strings, and thus in all programming languages I expect them to have quotation marks or some sort around them. However sometimes I create new targets with the same names. I will elaborate with an example. I reworded some things from the tutorial to make it a bit more clear for me to see what they actually do.
In the root CMakeLists.txt I have this file,
cmake_minimum_required(VERSION 3.10)
project(My_Project VERSION 1.0)
add_library(tutorial_compiler_flags INTERFACE)
target_compile_features(tutorial_compiler_flags INTERFACE cxx_std_11)
option(USE_MYMATH "Use tutorial provided math implementation" TRUE)
configure_file(src/sqrt.h.in src/sqrt.h)
if(USE_MYMATH)
add_subdirectory(MathFunctions)
list(APPEND EXTRA_LIBS MathFunctions)
endif()
add_executable(compute_square_root src/sqrt.cxx)
target_link_libraries(compute_square_root PUBLIC ${EXTRA_LIBS} tutorial_compiler_flags)
target_include_directories(compute_square_root PUBLIC "${PROJECT_BINARY_DIR}/src")
Inside of MathFunctions I have
add_library(MathFunctions mysqrt.cxx)
target_include_directories(MathFunctions INTERFACE ${CMAKE_CURRENT_SOURCE_DIR})
Here is where the confusion can come from. Notice that in
add_subdirectory(MathFunctions)
MathFunctions is kind of treated as a string in my eyes, because it is now looking for the directory current_location/MathFunctions. However inside of of the MathFunctions CMakeLists.txt it now creates a target with the exact same spelling from the line "add_library(MathFunctions mysqrt.cxx)", this is then immediately referenced afterwards from the "target_include_directories(MathFunctions, ...".
Here, target_include_directories is referring to the target MathFunctions we just created. Now, when we leave that CMakeLists.txt we now have another line "list(APPEND EXTRA_LIBS MathFunctions)". Now I some confusion, like, is this MathFunctions referring to the target we just made? Is it a string called "MathFunctions"? In the documentation for target_link_libraries it says that it has to be a target created by add_library so I assume it is referring to the previous add_library(MathFunctions ...) call. I find the scoping weird here too, since we are referring to something that was made from a child, inside a different call.
Do we have certain rules in CMake for this kind of behaviour? THanks
All command parameters are treated as strings in cmake. Parameters are separated by whitespace unless quoted. The exact effect of a parameter depends on the command.
The following commands have the same effect:
add_subdirectory(MathFunctions)
add_subdirectory("MathFunctions")
In the case of add_library the first parameter is treated as the target name. CMake internally keeps track of targets and stores several pieces of information for them. The target name MathFunctions is entirely unrelated to the name of the subdirectory added via add_subdirectory; you could rename the directory to FooBar and use add_subdirectory(FooBar) and nothing would change.
There are several commands you pass the target name to to modify the properties of the cmake target as well as commands that treat the name of cmake targets specially e.g.:
target_include_directories: the target to modify the [INTERFACE_]INCLUDE_DIRECTORIES property for is passed
target_link_directories: the target to modify the [INTERFACE_]LINK_DIRECTORIES property for is passed
set_target_properties: One or more targets to set properties for are passed
target_link_libraries: The cmake target linked to is passed. Furthermore cmake library targets may be specified as libraries to be linked to the target.
add_test: If you use the name of a cmake target in the COMMAND part, the test logic uses the path to the target instead.
...
As for scope:
Variable values you write are actually set for the current scope only, but reading variables cmake looks into ancestor scopes, unless a variable is found in the current scope. CMake targets are visible in the whole cmake project though from the point of the parsing of the command creating the target(add_library, add_executable, add_custom_target): cmake targets are "global objects". (Exceptions exist for imported libs and alias targets, but that's probably nothing relevant to you right now.)
In the build process, I set directories where I gather the build output of different sub-projects. The directories are set as :
set( CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG "${CMAKE_CURRENT_LIST_DIR}/../build/bin/debug" )
set( CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE "${CMAKE_CURRENT_LIST_DIR}/../build/bin/release" )
Now, I'd like to copy some files (a directory of qt plugins) to that directory dependent on the configuration which it is built for.
I tried:
# copy qt plugins
add_custom_command( TARGET mytarget POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory
"${QT_DIR}/../../../plugins"
"${$<UPPER_CASE:CMAKE_RUNTIME_OUTPUT_DIRECTORY_$<CONFIG> >}/plugins"
COMMAND_EXPAND_LISTS)
thus, I try to build a string that equals the variable name and then try to expand that as described here: CMake interpret string as variable. In other words: I would like to have a generator expression that evaluates to the content of CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG or CMAKE_RUNTIME_OUTPUT_DIRECTOR_RELEASE dependent on the current build configuration.
However running cmake with the statement above results in an error:
"CMakeLists.txt:112: error: Syntax error in cmake code at [..] when parsing string ${$<UPPER_CASE:CMAKE_RUNTIME_OUTPUT_DIRECTORY_$<CONFIG> >}/plugins Invalid character ('<') in a variable name: '$'
So my question is, how can I use a generator-expression to access the corresponding variable? (Bonus question: is there another/better way to achieve the same goal?)
So my question is, how can I use a generator-expression to access the corresponding variable?
You cannot. There is currently (CMake <=3.23) no way to expand a variable whose name is determined by the value of a generator expression.
Bonus question: is there another/better way to achieve the same goal?
Yes, and you are almost there! You can use $<TARGET_FILE_DIR:...>:
add_custom_command(
TARGET mytarget POST_BUILD
COMMAND
${CMAKE_COMMAND} -E copy_directory
"${QT_DIR}/../../../plugins"
"$<TARGET_FILE_DIR:mytarget>/plugins"
VERBATIM
)
This works because TARGET_FILE_DIR evaluates to the actual directory containing the executable or library file for mytarget, no matter the active configuration, property values, etc.
Docs: https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html#genex:TARGET_FILE_DIR
CMAKE_RUNTIME_OUTPUT_DIRECTORY_<CONFIG> is already relative to the binary directory so you should not try to compute the binary directory in its definition. Also, it supports generator expressions. Thus, the following will be much more robust:
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "bin/$<LOWER_CASE:$<CONFIG>>"
CACHE STRING "Common output directory for runtime artifacts")
This has a bunch of concrete benefits:
No need to set CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG or CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE
This will work for MinSizeRel and RelWithDebInfo, plus any custom configurations one might add down the line.
Since it's defined as a cache variable, it can be overridden for debugging / working around name clashes, etc.
A bit more context for (3): most CMAKE_* variables are intended to be either read-only or user-configurable (i.e. at the command line, from the GUI, etc.). Overriding their defaults via set(CACHE) is a polite compromise. A notable exception to this rule is the collection of Qt codegen flags (CMAKE_AUTO{MOC,RCC,UIC}). These must typically be set for the build to produce usable binaries.
Disclaimer: I'm aware of this question. However, The OP's needs are different to mine: what he actually wants is to port an app to Linux and therefore the answers go in that line, not answering what I want to know: the reasons of the error.
I'm trying to create a dropdown list in CMake GUI following the instructions in here and here
So I have this very simple CMakeLists.txt:
cmake_minimum_required(VERSION 3.6)
project(datasetprograms)
set(CMAKE_CXX_STANDARD 11)
#LINES TO MAKE THE GUI DROP-DOWN:
set(TARGET_ARCHITECTURE “arm” CACHE STRING “Architecture to compile to”)
set_property(CACHE TARGET_ARCHITECTURE PROPERTY STRINGS arm x86)
#Add subdirectories for each project
add_subdirectory(helloworld)
Basically I just copied and pasted, following the instructions. However, instead of having a nice drop-down in the CMake GUI, I got the following error:
CMake Error at CMakeLists.txt:9 (set_property): set_property could
not find CACHE variable TARGET_ARCHITECTURE. Perhaps it has not yet
been created
Question: What I'm doing wrong?
You may check value of variable TARGET_ARCHITECTURE using message() and you will found CACHE is a part of that value.
This is because you use in set() command double quotes which are not common ones (") but language-specific (“). So CMake treats set() command as not CACHE'd one. That is a reason of the error message.
Due to the following warning:
CMake Error at test/CMakeLists.txt:29 (get_target_property):
The LOCATION property may not be read from target "my_exe". Use the
target name directly with add_custom_command, or use the generator
expression $<TARGET_FILE>, as appropriate.
which is the result from lines like this:
get_target_property(my_exe_path my_exe LOCATION)
Like recommended in the docs, I tried to use a generator expression like this:
add_executable(my_exe_path main.cpp)
message("path to executable: $<TARGET_FILE:my_exe_path>")
But TARGET_FILE is not being evaluated
path to executable: $<TARGET_FILE:my_exe>
I'm using CMake 3.4 and added cmake_minimum_required(VERSION 3.4) to my CMakeLists.txt so what am I doing wrong?
Here is a quick and easy way to print the value of a generator expression:
add_custom_target(print
${CMAKE_COMMAND} -E echo $<1:hello> $<0:world>
)
In this example, if you run cmake . and then make print, you will see "hello" (without the quotation marks) in the output.
However, if you just use message($<1:hello> $<0:world>), you will see "$<1:hello> $<0:world>" as output (again, without the quotation marks).
While generator expression is stored at configuration stage (when corresponded CMake command is executed),
evaluation of generator expressions is performed at build stage.
This is why message() command prints generator expression in non-dereferenced form: value denoted by the generator expression is not known at this stage.
Moreover, CMake never dereferences generator expressions by itself. Instead, it generates appropriate string in the build file, which is then interpreted by build utility (make, Visual Studio, etc.).
Note, that not every CMake command accepts generator expressions. Each possible usage of generator expressions is explicitely described in documentation for specific command. Moreover, different CMake command flows or different options have different policy about using of generator expressions.
For example, command flow
add_test(NAME <name> COMMAND <executable>)
accepts generator expressions for COMMAND option,
but command flow
add_test(<name> <executable>)
doesn't!
Another example of policies difference:
install(DIRECTORY <dir> DESTINATION <dest>)
In this command flow generator expressions are allowed for DESTINATION, but not for DIRECTORY option.
Again, read documentation carefully.
I feel a little stupid right now. After recently converting a few smaller projects to use CMake, I decided to also get rid of a few "Platform_Config.h" files. These files contain a few preprocessing directives like #define USE_NEW_CACHE and control compilation.
How would I 'convert' these defines to be controlled with CMake? Ideally by using these "cache" variables the user can easily edit.
There are two options. You can use the add_definitions method to pass defines as compiler flags: E.g. somewhere in your projects cmakelists.txt:
add_definitions( -DUSE_NEW_CACHE )
CMake will make sure the -D prefix is converted to the right flag for your compiler (/D for msvc and -D for gcc).
Alternatively, check out configure_file. It is more complex, but may be better suited to your original approach with a Platform_Config file.
You can create an input-file, similar to your original Platform_Config.h and add "#cmakedefine" lines to it.
Let's call in Platform_Config.h.in:
// In Platform_Config.h.in
#cmakedefine USE_NEW_CACHE
// end of Platform_Config.h.in
When then running
configure_file( ${CMAKE_SOURCE_DIR}/Platform_Config.h.in ${CMAKE_BINARY_DIR}/common/Platform_Config.h )
it will generate a new Platform_Config file in your build-dir. Those variables in cmake which are also a cmakedefine will be present in the generated file, the other ones will be commented out or undefed.
Of course, you should make sure the actual, generated file is then correctly found when including it in your source files.
option command might provide what you are looking for.
use it with the COMPILE DEFINITIONS property on the target and i think you are done.
To set the property on the target, use the command set target properties
option(DEBUGPRINTS "Prints a lot of debug prints")
target(myProgram ...)
if(DEBUGPRINTS)
set_target_properties(myProgram PROPERTIES COMPILE_DEFINITIONS "DEBUGPRINTS=1")
endif()
edit:
The option i wrote in the example shows up as a checkbox in the CMake GUI.
In case you want to set defines per target: Since 2.8.11 you can use target_compile_definitions.
In earlier versions you probably don't want to use set_target_properties as is, since it overwrites any defines you set previously. Call get_target_property first instead, then merge with previous values. See add_target_definitions here.
Use target_compile_options. Do not quote your define or it not be detected as a define. CMake parses off the /define and adds the actual define to the DefineConstants section of the csproj, if there are quotes it will put the entire quoted string in the AdditionalOptions section of the csproj.
An example from one of my projects that uses generator expressions:
target_compile_options( ${LIBRARY_NAME} PRIVATE
$<${IS_ART_ITERATION_BUILD}:/define:ART_ITERATION_BUILD>
)
An example without generator expressions:
target_compile_options( ${LIBRARY_NAME} PRIVATE
/define:GRAPHICS_VULKAN
)