How can I get a previous emission Kotlin Flow? - kotlin

Let me use a simple image to illustrate what I want to get:
I don't want to use SharedFlow's replayCache to achieve this because if a new observer observes that SharedFlow, it will get 2 emissions instead of one latest emission.
Or if I write it in code:
val sharedFlow = MutableSharedFlow(replay = 1)
val theFlowThatIWant = sharedFlow.unknownOperator { … }
sharedFlow.emit(1)
sharedFlow.emit(2)
sharedFlow.collect {
println(it)
}
Expected output:
2
theFlowThatIWant.collect {
println(it)
}
Expected output:
1

We can create such operator by ourselves. We can generalize it to more items than only the last one and use circular buffer to keep postponed items:
suspend fun main() {
val f = flow {
repeat(5) {
println("Emitting $it")
emit(it)
delay(1000)
}
}
f.postponeLast()
.collect { println("Collecting $it") }
}
fun <T> Flow<T>.postponeLast(count: Int = 1): Flow<T> = flow {
val buffer = ArrayDeque<T>(count)
collect {
if (buffer.size == count) {
emit(buffer.removeFirst())
}
buffer.addLast(it)
}
}
Note that this solution never emits postponed items. If you like to emit them at the end, just add this after collect { }:
while (buffer.isNotEmpty()) {
emit(buffer.removeFirst())
}

Related

Read value from Kotlin flow and return immediately

I have to read a value from a flow just once and then immediately return it from the function. I have a piece of code like this:
fun getValue(): String {
val flow = getFlow()
Mainscope().launch {
flow.collect {
return it
}
}
}
But this is giving me an error saying that I cant return from inside collect. I know that ideally I should be returning the flow object itself and then calling collect on the returned flow. But it is not possible, since getValue() has already been used in several places by now and I cannot change its signature now.
I have tried using suspend and synchronized as follows:
// call the function like this: runBlocking { print(getValue()) }
suspend fun getValue(): String {
val flow = getFlow()
flow.collect {
return it
}
}
and
fun getValue(): String {
val lock = Any()
var value: String? = null
val flow = getFlow()
MainScope().launch {
flow.collect {
synchronized(lock) {
value = it.toString()
lock.notify()
}
}
}
synchronized(lock) {
while (value == null) lock.wait()
return value as String
}
}
But in both cases the control never reaches inside collect. So I tried putting collect inside a new thread:
...
val flow = getFlow()
thread {
MainScope().launch {
flow.collect {
synchronized(lock) {
value = it.toString()
lock.notify()
}
}
}
}
synchronized(lock) {
...
but its still the same. So how do I read the value from the flow in a non-suspending way and return it immediately?
To get first value of the flow:
fun getFlow() = flowOf("one","two","three")
fun getValue(): String {
var r = ""
runBlocking {
r = getFlow().firstOrNull()?:"none"
}
return r
}
println(getValue())
//one
To get last value of the flow:
fun getValue(): String {
var r = ""
runBlocking {
getFlow().collect {
r = it
}
}
return r
}
println(getValue())
//three

Can I use one Job instead of two Jobs when I use Flow in Kotlin?

In Code A, there are two Flows, and I assign two jobs for them, I collect the two Flows in fun beginSoundDensity() and stop collecting the two Flows in fun resetSoundDensity().
I think there are many repeated codes in Code A, so I hope to improve it, but Code B doesn't work.
Can I use one Job in my case?
Code A
private val _soundDensityState = MutableStateFlow(initialMSoundDensity)
val soundDensityState = _soundDensityState.asStateFlow()
private val _timeX = MutableStateFlow(0)
val timeX = _timeX.asStateFlow()
private var myJob1: Job?=null
private var myJob2: Job?=null
val myFlow: Flow<Int> = flow {
var i = 0
while (true) {
emit(i)
i = i + 15
delay(5000)
}
}
fun beginSoundDensity() {
myJob1?.cancel()
myJob2?.cancel()
myJob1 = viewModelScope.launch {
aSoundMeter.startSoundDensity {
pauseSoundDensity()
}.cancellable()
.collect {
_soundDensityState.value = it
}
}
myJob2 = viewModelScope.launch {
myFlow.collect {
_timeX.value = it
}
}
}
}
fun resetSoundDensity(){
myJob1?.cancel()
myJob2?.cancel()
}
Code B
//The same
private var myJob: Job?=null
val myFlow: Flow<Int> = flow {
var i = 0
while (true) {
emit(i)
i = i + 15
delay(5000)
}
}
fun beginSoundDensity() {
myJob?.cancel()
myJob = viewModelScope.launch {
aSoundMeter.startSoundDensity {
pauseSoundDensity()
}.cancellable()
.collect {
_soundDensityState.value = it
}
myFlow.collect {
_timeX.value = it //It will not be launched
}
}
}
}
fun resetSoundDensity(){
myJob?.cancel()
}
Yes and no. You need two separate coroutines running concurrently to collect from two flows. In your Code B myFlow will be collected only after aSoundMeter finishes collecting. Collections need to run at the same time, so you need two concurrent coroutines for this purpose.
However, if you always start and cancel both collections together, then I think it would be better to group them into a single coroutine like this:
fun beginSoundDensity() {
myJob?.cancel()
myJob = viewModelScope.launch {
coroutineScope {
launch {
aSoundMeter.startSoundDensity {
pauseSoundDensity()
}.cancellable()
.collect {
_soundDensityState.value = it
}
}
launch {
myFlow.collect {
_timeX.value = it //It will not be launched
}
}
}
}
}
fun resetSoundDensity(){
myJob?.cancel()
}

Can I collect data from a Flow every two seconds in Kotlin?

I use Code A to colloet data from the Flow timeXFlow.
I hope to collect the data every two seconds, how can I do ?
Code A
val _timeX = MutableStateFlow(0)
viewModelScope.launch {
timeXFlow.collect {
_timeX.value = it
}
}
val timeXFlow: Flow<Int> = flow {
var i = 0
while (true) {
emit(i)
i = toDosome( ) // I can't estimate the time
delay(1000)
}
}
#Composable
fun UI(){
//I hope that xTime can be updated per 2 sec, so UI can repaint with new data.
val xTime by _timeX.collectAsState()
...
}
Added Content
To Arpit Shukla: Thanks!
The Code B is based your thinking, but your way will lost many emitting datas.
Code B
val _timeX = MutableStateFlow(0)
private var aa=0
viewModelScope.launch {
coroutineScope {
launch {
while (true) {
_timeX.value = aa
delay(2000)
}
}
launch {
timeXFlow.collect {
aa = it
}
}
}
}
//The same with Code A
A simple solution that comes to my mind is:
viewModelScope.launch {
var i = 0
launch {
while(true) {
updateUI(i)
delay(2000)
}
}
timeXFlow.collect {
i = it
}
}

Kotlin async processing with optional async dependencies

I have a function that conditionally fetches some data and runs some tasks concurrently on that data. Each task depends on different sets of data and I would like to avoid fetching the data that's not needed. Moreover, some of the data can have already been prefetched and given to the function. See the code I've come up with below.
suspend fun process(input: SomeInput, prefetchedDataX: DataX?, prefetchedDataY: DataY?) = coroutineScope {
val dataXAsync = lazy {
if (prefetchedDataX == null) {
async { fetchDataX(input) }
} else CompletableDeferred(prefetchedDataX)
}
val dataYAsync = lazy {
if (prefetchedDataY == null) {
async { fetchDataY(input) }
} else CompletableDeferred(prefetchedDataY)
}
if (shouldDoOne(input)) launch {
val (dataX, dataY) = awaitAll(dataXAsync.value, dataYAsync.value)
val modifiedDataX = modifyX(dataX)
val modifiedDataY = modifyY(dataY)
doOne(modifiedDataX, modifiedDataY)
}
if (shouldDoTwo(input)) launch {
val modifiedDataX = modifyX(dataXAsync.value.await())
doTwo(modifiedDataX)
}
if (shouldDoThree(input)) launch {
val modifiedDataY = modifyY(dataYAsync.value.await())
doThree(modifiedDataY)
}
}
Any improvements that could be made to this code? One, I don't like having to fakely wrap the prefetched data into a CompletableDeferred. Two, I don't like having to call modifyX, modifyY inside each task, I wish I could apply it at the fetching stage, but I haven't come up with a nice way to do that. Alternatively I could do
val modifiedDataXAsync = lazy {
async { modifyX(prefetchedDataX ?: fetchDataX(input)) }
}
but it feels wasteful to be spawning a new coroutine when the data is already prefetched. Am I over-optimizing?
How about this? This code is pretty similar to yours, I just simplified it a bit.
suspend fun process(input: SomeInput, prefetchedDataX: DataX?, prefetchedDataY: DataY?) = coroutineScope {
val modifiedDataX by lazy {
async { modifyX(prefetchedDataX ?: fetchDataX(input)) }
}
val modifiedDataY by lazy {
async { modifyY(prefetchedDataY ?: fetchDataY(input)) }
}
if (shouldDoOne(input)) launch {
val (dataX, dataY) = awaitAll(modifiedDataX, modifiedDataY)
doOne(dataX, dataY)
}
if (shouldDoTwo(input)) launch {
doTwo(modifiedDataX.await())
}
if (shouldDoThree(input)) launch {
doThree(modifiedDataY.await())
}
}

How to write rx concatArrayEager equivalent in Kotlin CoRoutine?

I would like to convert my rxJava Code to Kotlin CoRoutine.
Below is the code makes both the api and db call and returns the data to UI whatever comes first. Let us say if DB response happens to be quicker than the api. In that case still, the api response would continue until it receives the data to sync with db though it could have done the UI update earlier.
How Would I do it?
class MoviesRepository #Inject constructor(val apiInterface: ApiInterface,
val MoviesDao: MoviesDao) {
fun getMovies(): Observable<List<Movie>> {
val observableFromApi = getMoviesFromApi()
val observableFromDb = getMoviesFromDb()
return Observable.concatArrayEager(observableFromApi, observableFromDb)
}
fun getMoviesFromApi(): Observable<List<Movie>> {
return apiInterface.getMovies()
.doOnNext { it ->
it.data?.let { it1 -> MoviesDao.insertAllMovies(it1) }
println("Size of Movies from API %d", it.data?.size)
}
.map({ r -> r.data })
}
fun getMoviesFromDb(): Observable<List<Movie>> {
return MoviesDao.queryMovies()
.toObservable()
.doOnNext {
//Print log it.size :)
}
}
}
As the first step you should create suspend funs for your ApiInterface and MovieDao calls. If they have some callback-based API, you can follow these official instructions.
You should now have
suspend fun ApiInterface.suspendGetMovies(): List<Movie>
and
suspend fun MoviesDao.suspendQueryMovies(): List<Movie>
Now you can write this code:
launch(UI) {
val fromNetwork = async(UI) { apiInterface.suspendGetMovies() }
val fromDb = async(UI) { MoviesDao.suspendQueryMovies() }
select<List<Movie>> {
fromNetwork.onAwait { it }
fromDb.onAwait { it }
}.also { movies ->
// act on the movies
}
}
The highlight is the select call which will simultaneously await on both Deferreds and act upon the one that gets completed first.
If you want to ensure you act upon the result from the network, you'll need some more code, for example:
val action = { movies: List<Movie> ->
// act on the returned movie list
}
var gotNetworkResult = false
select<List<Movie>> {
fromNetwork.onAwait { gotNetworkResult = true; it }
fromDb.onAwait { it }
}.also(action)
if (!gotNetworkResult) {
action(fromNetwork.await())
}
This code will act upon the DB results only if they come in before the network results, which it will process in all cases.
Something along those lines should work:
data class Result(val fromApi: ???, val fromDB: ???)
fun getMovies(): Result {
val apiRes = getMoviesFromApiAsync()
val dbRes = getMoviesFromDbAsync()
return Result(apiRes.await(), dbRes.await())
}
fun getMoviesFromApiAsync() = async {
return apiInterface.getMovies()
.doOnNext { it ->
it.data?.let { it1 -> MoviesDao.insertAllMovies(it1) }
println("Size of Movies from API %d", it.data?.size)
}
.map({ r -> r.data })
}
fun getMoviesFromDbAsync() = async {
return MoviesDao.queryMovies()
}
I don't know what you're returning, so I just put ??? instead.