How to get table/column usage statistics in Redshift - sql

I want to find which tables/columns in Redshift remain unused in the database in order to do a clean-up.
I have been trying to parse the queries from the stl_query table, but it turns out this is a quite complex task for which I haven't found any library that I can use.
Anyone knows if this is somehow possible?
Thank you!

The column question is a tricky one. For table use information I'd look at stl_scan which records info about every table scan step performed by the system. Each of these is date-stamped so you will know when the table was "used". Just remember that system logging tables are pruned periodically and the data will go back for only a few days. So may need a process to view table use daily to get extended history.
I ponder the column question some more. One thought is that query ids will also be provided in stl_scan and this could help in identifying the columns used in the query text. For every query id that scans table_A search the query text for each column name of the table. Wouldn't be perfect but a start.

Related

one table with a lot of rows or a lot of tables with a view? on SQL Server

My question comes from what is more efficient when making queries and insert, since the number of registers(data) in my table will grow a lot.
I would like to know what is more efficient to do if all the data is placed within a single table or is the partition and through a View and trigger is more efficient to obtain and enter registers(data).
As already mentioned take a look at database normalization.
SQL is a way to work with relational databases and is built on the idea that we should have many tables that are linked with each other trough relationships. Thus I recommend multiple tables, because you will be able to reuse data (for example user name and surname) through specific IDs rather than copying that data each time a user performs some action on your platform and you need to insert or update some information.
Hope this helps!

Does Tabledata.list() count towards compute usage in BigQuery?

They say there are no stupid questions, but this might be an exception.
I understand that BigQuery, being a columnar database, does a full table scan for any query over a specific column.
I also understand that query results can be cached or a named table can be created with the results of a query.
However I also see tabledata.list() in the documentation, and I'm unsure of how this fits in with query costs. Once a table is created from a query, am I free to access that table without cost through the API?
Let's say, for example, I run a query that is grouped by UserID, and I want to then present the results of that query to individual users based on that ID. As far as I understand there are two obvious ways of getting out the appropriate row for doing so.
I can write another query over the destination table with a WHERE userID=xxx clause
I can use the tabledata.list() endpoint to get all the (potentially paginated) data and get the appropriate row myself in my code
Where situation 1 would incur a query cost, and situation 2 would not? Am I getting this right?
Tabledata.list API is free as it actually does not use BigQuery Engine at all
so you are right for both 1 and 2

Google Big Query - Date-Partitioned Tables with Eventual Data

Our use case for BigQuery is a little unique. I want to start using Date-Partitioned Tables but our data is very much eventual. It doesn't get inserted when it occurs, but eventually when it's provided to the server. At times this can be days or even months before any data is inserted. Thus, the _PARTITION_LOAD_TIME attribute is useless to us.
My question is there a way I can specify the column that would act like the _PARTITION_LOAD_TIME argument and still have the benefits of a Date-Partitioned table? If I could emulate this manually and have BigQuery update accordingly, then I can start using Date-Partitioned tables.
Anyone have a good solution here?
You don't need create your own column.
_PARTITIONTIME pseudo column still will work for you!
The only what you will need to do is insert/load respective data batch into respective partition by referencing not just table name but rather table with partition decorator - like yourtable$20160718
This way you can load data into partition that it belong to

Performance Improve on SQL Large table

Im having 260 columns table in SQL server. When we run "Select count(*) from table" it is taking almost 5-6 to get the count. Table contains close 90-100 million records with 260 columns where more than 50 % Column contains NULL. Apart from that, user can also build dynamic sql query on to table from the UI, so searching 90-100 million records will take time to return results. Is there way to improve find functionality on a SQL table where filter criteria can be anything , can any1 suggest me fastest way get aggregate data on 25GB data .Ui should get hanged or timeout
Investigate horizontal partitioning. This will really only help query performance if you can force users to put the partitioning key into the predicates.
Try vertical partitioning, where you split one 260-column table into several tables with fewer columns. Put all the values which are commonly required together into one table. The queries will only reference the table(s) which contain columns required. This will give you more rows per page i.e. fewer pages per query.
You have a high fraction of NULLs. Sparse columns may help, but calculate your percentages as they can hurt if inappropriate. There's an SO question on this.
Filtered indexes and filtered statistics may be useful if the DB often runs similar queries.
As the guys state in the comments you need to analyse a few of the queries and see which indexes would help you the most. If your query does a lot of searches, you could use the full text search feature of the MSSQL server. Here you will find a nice reference with good examples.
Things that came me up was:
[SQL Server 2012+] If you are using SQL Server 2012, you can use the new Columnstore Indexes.
[SQL Server 2005+] If you are filtering a text column, you can use Full-Text Search
If you have some function that you apply frequently in some column (like SOUNDEX of column, for example), you could create PERSISTED COMPUTED COLUMN to not having to compute this value everytime.
Use temp tables (indexed ones will be much better) to reduce the number of rows to work on.
#Twelfth comment is very good:
"I think you need to create an ETL process and start changing this into a fact table with dimensions."
Changing my comment into an answer...
You are moving from a transaction world where these 90-100 million records are recorded and into a data warehousing scenario where you are now trying to slice, dice, and analyze the information you have. Not an easy solution, but odds are you're hitting the limits of what your current system can scale to.
In a past job, I had several (6) data fields belonging to each record that were pretty much free text and randomly populated depending on where the data was generated (they were search queries and people were entering what they basically would enter in google). With 6 fields like this...I created a dim_text table that took each entry in any of these 6 tables and replaced it with an integer. This left me a table with two columns, text_ID and text. Any time a user was searching for a specific entry in any of these 6 columns, I would search my dim_search table that was optimized (indexing) for this sort of query to return an integer matching the query I wanted...I would then take the integer and search for all occourences of the integer across the 6 fields instead. searching 1 table highly optimized for this type of free text search and then querying the main table for instances of the integer is far quicker than searching 6 fields on this free text field.
I'd also create aggregate tables (reporting tables if you prefer the term) for your common aggregates. There are quite a few options here that your business setup will determine...for example, if each row is an item on a sales invoice and you need to show sales by date...it may be better to aggregate total sales by invoice and save that to a table, then when a user wants totals by day, an aggregate is run on the aggreate of the invoices to determine the totals by day (so you've 'partially' aggregated the data in advance).
Hope that makes sense...I'm sure I'll need several edits here for clarity in my answer.

`active' flag or not?

OK, so practically every database based application has to deal with "non-active" records. Either, soft-deletions or marking something as "to be ignored". I'm curious as to whether there are any radical alternatives thoughts on an `active' column (or a status column).
For example, if I had a list of people
CREATE TABLE people (
id INTEGER PRIMARY KEY,
name VARCHAR(100),
active BOOLEAN,
...
);
That means to get a list of active people, you need to use
SELECT * FROM people WHERE active=True;
Does anyone suggest that non active records would be moved off to a separate table and where appropiate a UNION is done to join the two?
Curiosity striking...
EDIT: I should make clear, I'm coming at this from a purist perspective. I can see how data archiving might be necessary for large amounts of data, but that is not where I'm coming from. If you do a SELECT * FROM people it would make sense to me that those entries are in a sense "active"
Thanks
You partition the table on the active flag, so that active records are in one partition, and inactive records are in the other partition. Then you create an active view for each table which automatically has the active filter on it. The database query engine automatically restricts the query to the partition that has the active records in it, which is much faster than even using an index on that flag.
Here is an example of how to create a partitioned table in Oracle. Oracle doesn't have boolean column types, so I've modified your table structure for Oracle purposes.
CREATE TABLE people
(
id NUMBER(10),
name VARCHAR2(100),
active NUMBER(1)
)
PARTITION BY LIST(active)
(
PARTITION active_records VALUES (0)
PARTITION inactive_records VALUES (1)
);
If you wanted to you could put each partition in different tablespaces. You can also partition your indexes as well.
Incidentally, this seems a repeat of this question, as a newbie I need to ask, what's the procedure on dealing with unintended duplicates?
Edit: As requested in comments, provided an example for creating a partitioned table in Oracle
Well, to ensure that you only draw active records in most situations, you could create views that only contain the active records. That way it's much easier to not leave out the active part.
We use an enum('ACTIVE','INACTIVE','DELETED') in most tables so we actually have a 3-way flag. I find it works well for us in different situations. Your mileage may vary.
Moving inactive stuff is usually a stupid idea. It's a lot of overhead with lots of potential for bugs, everything becomes more complicated, like unarchiving the stuff etc. What do you do with related data? If you move all that, too, you have to modify every single query. If you don't move it, what advantage were you hoping to get?
That leads to the next point: WHY would you move it? A properly indexed table requires one additional lookup when the size doubles. Any performance improvement is bound to be negligible. And why would you even think about it until the distant future time when you actually have performance problems?
I think looking at it strictly as a piece of data then the way that is shown in the original post is proper. The active flag piece of data is directly dependent upon the primary key and should be in the table.
That table holds data on people, irrespective of the current status of their data.
The active flag is sort of ugly, but it is simple and works well.
You could move them to another table as you suggested. I'd suggest looking at the percentage of active / inactive records. If you have over 20 or 30 % inactive records, then you might consider moving them elsewhere. Otherwise, it's not a big deal.
Yes, we would. We currently have the "active='T/F'" column in many of our tables, mainly to show the 'latest' row. When a new row is inserted, the previous T row is marked F to keep it for audit purposes.
Now, we're moving to a 2-table approach, when a new row is inserted, the previous row is moved to an history table. This give us better performance for the majority of cases - looking at the current data.
The cost is slightly more than the old method, previously you had to update and insert, now you have to insert and update (ie instead of inserting a new T row, you modify the existing row with all the new data), so the cost is just that of passing in a whole row of data instead of passing in just the changes. That's hardly going to make any effect.
The performance benefit is that your main table's index is significantly smaller, and you can optimise your tablespaces better (they won't grow quite so much!)
Binary flags like this in your schema are a BAD idea. Consider the query
SELECT count(*) FROM users WHERE active=1
Looks simple enough. But what happens when you have a large number of users, so many that adding an index to this table would be required. Again, it looks straight forward
ALTER TABLE users ADD INDEX index_users_on_active (active)
EXCEPT!! This index is useless because the cardinality on this column is exactly two! Any database query optimiser will ignore this index because of it's low cardinality and do a table scan.
Before filling up your schema with helpful flags consider how you are going to access that data.
https://stackoverflow.com/questions/108503/mysql-advisable-number-of-rows
We use active flags quite often. If your database is going to be very large, I could see the value in migrating inactive values to a separate table, though.
You would then only require a union of the tables when someone wants to see all records, active or inactive.
In most cases a binary field indicating deletion is sufficient. Often there is a clean up mechanism that will remove those deleted records after a certain amount of time, so you may wish to start the schema with a deleted timestamp.
Moving off to a separate table and bringing them back up takes time. Depending on how many records go offline and how often you need to bring them back, it might or might not be a good idea.
If the mostly dont come back once they are buried, and are only used for summaries/reports/whatever, then it will make your main table smaller, queries simpler and probably faster.
We use both methods for dealing with inactive records. The method we use is dependent upon the situation. For records that are essentially lookup values, we use the Active bit field. This allows us to deactivate entries so they wont be used, but also allows us to maintain data integrity with relations.
We use the "move to separation table" method where the data is no longer needed and the data is not part of a relation.
The situation really dictates the solution, methinks:
If the table contains users, then several "flag" fields could be used. One for Deleted, Disabled etc. Or if space is an issue, then a flag for disabled would suffice, and then actually deleting the row if they have been deleted.
It also depends on policies for storing data. If there are policies for keeping data archived, then a separate table would most likely be necessary after any great length of time.
No - this is a pretty common thing - couple of variations depending on specific requirements (but you already covered them):
1) If you expect to have a whole BUNCH of data - like multiple terabytes or more - not a bad idea to archive deleted records immediately - though you might use a combination approach of marking as deleted then copying to archive tables.
2) Of course the option to hard delete a record still exists - though us developers tend to be data pack-rats - I suggest that you should look at the business process and decide if there is now any need to even keep the data - if there is - do so... if there isn't - you should probably feel free just to throw the stuff away.....again, according to the specific business scenario.
From a 'purist perspective' the realtional model doesn't differentiate between a view and a table - both are relations. So that use of a view that uses the discriminator is perfectly meaningful and valid provided the entities are correctly named e.g. Person/ActivePerson.
Also, from a 'purist perspective' the table should be named person, not people as the name of the relation reflects a tuple, not the entire set.
Regarding indexing the boolean, why not:
ALTER TABLE users ADD INDEX index_users_on_active (id, active) ;
Would that not improve the search?
However I don't know how much of that answer depends on the platform.
This is an old question but for those search for low cardinality/selectivity indexes, I'd like to propose the following approach that avoids partitioning, secondary tables, etc.:
The trick is to use "dateInactivated" column that stores the timestamp of when the record is inactivated/deleted. As the name implies, the value is NULL while the record is active, but once inactivated, write in the system datetime. Thus, an index on that column ends up having high selectivity as the number of "deleted" records grows since each record will have a unique (not strictly speaking) value.
Then your query becomes:
SELECT * FROM people WHERE dateInactivated is NULL;
The index will pull in just the right set of rows that you care about.
Filtering data on a bit flag for big tables is not really good in terms of performance. In case when 'active' determinate virtual deletion you can create 'TableName_delted' table with the same structure and move deleted data there using delete trigger.
That solution will help with performance and simplifies data queries.