I am developing a GAN using the Mnist dataset. I have developed the Generator and Discriminator. However, when I combine them together I get this error: Input 0 of layer "conv2d" is incompatible with the layer: expected axis -1 of input shape to have value 1, but received input with shape (None, 57, 57, 1024). Does anyone know why this happens? Do I have to add something else?
The preprocessing:
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.reshape(60000, 28, 28, 1)
x_test = x_test.reshape(10000, 28, 28, 1)
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255
img_rows, img_cols = 28, 28
channels = 1
img_shape = (img_rows, img_cols, channels)
The Generator:
def generator():
model = Sequential()
model.add(Conv2DTranspose(32, (3,3), strides=(2, 2), activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2DTranspose(64,(3,3),strides=(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(64,(3,3),strides=(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512, activation=LeakyReLU(alpha=0.2)))
model.add(BatchNormalization(momentum=0.7))
model.add(Dense(1024, activation='tanh'))
model.summary()
model.compile(loss=keras.losses.binary_crossentropy, optimizer=Adam(learning_rate=0.02))
return model
generator = generator()
The Discriminator:
def discriminator():
model = Sequential()
model.add(Conv2D(32, (5,5), strides=(2, 2), activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2D(64,(5,5),strides=(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(64,(5,5),strides=(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512, activation=LeakyReLU(alpha=0.2)))
model.add(BatchNormalization(momentum=0.7))
model.add(Dense(1024, activation='tanh'))
model.summary()
model.compile(loss=keras.losses.binary_crossentropy, optimizer=Adam(learning_rate=0.02))
return model
discriminator = discriminator()
Both models combined (Where I get the error):
def GAN(generator, discriminator):
model = Sequential()
model.add(generator)
discriminator.trainable = False
model.add(discriminator)
model.summary()
model.compile()
return model
gan = GAN(generator, discriminator)
Your generator needs to produce images, thus the output shape of the generator must be the same shape as the images. The activation also must be compatible with the range in the images. I don't think your images go from -1 to +1, so you should not use "tanh". You must choose an activation compatible with the images.
Last generator layer:
Dense(img_shape[-1], ...)
Your discriminator needs to say whether the images are true or false, thus its output must have one value only, 0 or 1.
Last discriminator layer:
Dense(1, activation="sigmoid")
Related
I'm trying to get VGG16 model to acceptable accuracy but I can't get it above .3
here's the model
def VGG16():
model = Sequential()
model.add(Conv2D(input_shape=(224,224,3),filters=64,kernel_size=(3,3),padding='same', activation='relu'))
model.add(Conv2D(filters=64,kernel_size=(3,3),padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu'))
model.add(Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(filters=256, kernel_size=(3,3), padding='same', activation='relu'))
model.add(Conv2D(filters=256, kernel_size=(3,3), padding='same', activation='relu'))
model.add(Conv2D(filters=256, kernel_size=(3,3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2),name='vgg16'))
model.add(Flatten(name='flatten'))
model.add(Dense(4096, activation='relu', name='fc1'))
model.add(Dense(4096, activation='relu', name='fc2'))
model.add(Dense(9, activation='softmax', name='output'))
return model
opt = SGD(learning_rate=1e-6, momentum=0.9)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
some answers here suggested changing the number of neurons in the fully connected layers to 4096 (originally used 256 and 128), using SGD instead of Adam, increasing the number of epochs (tried 50, 100 and 200) and the batch size (tried 64 and 128) but I can't get it above .3 and usually it's .2.
parameters I used in the best result are
fully connected neurons 4096
optimizer SGD
learning rate e-6
epochs 100
batch size 128
edit dataset used https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic
you did not show the data for the model training but I suspect your model will be very prone to over fitting. You need to add some dropout layers and some regularization.
After your flatten layer type the following
model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001 ))
model.add(Dense(256, kernel_regularizer = regularizers.l2(l = 0.016),activity_regularizer=regularizers.l1(0.006),
bias_regularizer=regularizers.l1(0.006) ,activation='relu') )
model.add(Dropout(rate=.4, seed=123), name='dropout'))
model.add(Dense(9, activation='softmax', name='output'))
it would be helpful if you provide the model training data as well
i'm pretty new to machine learning. I followed a tutorial to classify if the user is similing or not. I created this code:
def get_model(input_size, classes=7):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu', input_shape =input_size))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(2, 2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same', kernel_regularizer=regularizers.l2(0.01)))
model.add(Conv2D(256, kernel_size=(3, 3), activation='relu', kernel_regularizer=regularizers.l2(0.01)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(classes, activation='softmax'))
#Compliling the model
model.compile(optimizer=Adam(lr=0.0001, decay=1e-6),
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
if i try to predict an array from flow_from_directory its working fine but i would like to predict it using the following code:
final_image = cv2.imread('./tesimg.jpeg')
final_image = np.expand_dims(final_image, axis=0)
final_image = final_image/255.0
The problem is that i'm getting this error:
UnimplementedError: Graph execution error:
I am trying to develop a GAN, I have created the generator and the discriminator and now I am trying to train it. I am using the Mnist dataset but I plan to use some more. The problem is that when I train it I get this error: Input 0 of layer "conv2d_transpose_4" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 100)
I don't really know if the problem is in the networks or in the data used to train the GAN, can someone tell me how should I train it or where the problem is?
imports:
import tensorflow
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Flatten, Input, BatchNormalization,
LeakyReLU, Reshape
from keras.layers import Conv2D, Conv2DTranspose, MaxPooling2D
from tensorflow.keras.optimizers import Adam
from keras import backend as K
from keras.utils import np_utils
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
generator:
def generator():
model = Sequential()
model.add(Conv2DTranspose(32, (3,3), strides=(2,
2), activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(BatchNormalization())
model.add(Dense(512,
activation=LeakyReLU(alpha=0.2)))
model.add(BatchNormalization(momentum=0.7))
model.build()
model.summary()
return model
discriminator:
def discriminator():
model = Sequential()
model.add(Conv2D(32, (5,5), strides=(2, 2),
activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512,
activation=LeakyReLU(alpha=0.2)))
model.add(Flatten())
model.add(BatchNormalization(momentum=0.7))
model.add(Dense(1, activation='sigmoid'))
model.build()
model.summary()
return model
train function:
def train(epochs, batch_size, save_interval):
(x_train, _), (_, _) = mnist.load_data()
x_train = (x_train.astype(np.float32) - 127.5) / 127.5
x_train = np.expand_dims(x_train, axis=3)
half_batch = int(batch_size / 2)
for epoch in range(epochs):
idx = np.random.randint(0, x_train.shape[0], half_batch)
imgs = x_train[idx]
noise = np.random.normal(0, 1, (half_batch, 100))
gen_imgs = generator.predict(noise)
d_loss_real = discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
d_loss_fake = discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
noise = np.random.normal(0, 1, (batch_size, 100))
valid_y = np.array([1] * batch_size)
g_loss = combined.train_on_batch(noise, valid_y)
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
if epoch % save_interval == 0:
save_imgs(epoch)
Data used:
img_rows = 28
img_cols = 28
channels = 1
img_shape = (img_rows, img_cols, channels)
optimizer = Adam(0.0002, 0.5)
discriminator = discriminator()
discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
generator = generator()
generator.compile(loss='binary_crossentropy',
optimizer=optimizer)
z = Input(shape=(100,))
img = generator(z) #error
discriminator.trainable = False
valid = discriminator(img)
combined = Model(z, valid)
combined.compile(loss='binary_crossentropy',
optimizer=optimizer)
train(epochs=100000, batch_size=32,
save_interval=10)
generator.save('generator_model.h5')
The problem is coming from the first Flatten layer in the Discriminator model, which is converting your n-dimensional tensor to a 1D tensor. Since a MaxPooling2D layer cannot work with a 1D tensor, you are seeing that error. If you remove it, it should work:
def discriminator():
model = Sequential()
model.add(Conv2D(32, (5,5), strides=(2, 2),
activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Flatten())
model.add(Dense(512,
activation=LeakyReLU(alpha=0.2)))
model.add(BatchNormalization(momentum=0.7))
model.add(Dense(1, activation='sigmoid'))
model.build()
model.summary()
return model
Update 1:
Try rewriting your Generator model like this:
def generator():
model = Sequential()
model = tf.keras.Sequential()
model.add(Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
model.summary()
return model
It should then work, but you should definitely go through this tutorial to understand everything.
First the discriminator is wrong you expecting the input noise to generator with same diemnsions where it is similaities for crossentrory, noises can generate into multiple levels where the batch is create !
WHen you looking at each layer you will see how much the layer identification need !
Simply doing by measure the input / output you don't need to removed or edit meaning of the model.
It is not the generator flase when you input is wrong try see the discriminator layers where they are training on the batch sizes and the genrated input image.
( It is noises similarlities cross-entrophy )
Model layers and shapes is not chagne when you use the input correct way
### name='conv2d_transpose_input'), name='conv2d_transpose_input', description="created by layer 'conv2d_transpose_input'"),
### but it was called on an input with incompatible shape (None, 100).
model = Sequential()
model.add(Conv2DTranspose(32, (3,3), strides=(2,
2), activation='relu', use_bias=False,
input_shape=(28, 28, 1)))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
########################
def discriminator():
model = Sequential()
### Input 0 of layer "conv2d" is incompatible with the layer: expected axis -1 of input shape to have value 1, but received input with shape (None, 114, 114, 512)
### model.add(tf.keras.layers.Reshape((1, 100), input_shape=img_shape))
model.add(Conv2D(32, (5,5), strides=(2, 2),
activation='relu', use_bias=False,
input_shape=( 28, 28, 1))) ### img_shape
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
...
I have prepared a CNN model for image colorization:
"""Encoder - Input grayscale image (L)"""
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(256, 256, 1)))
...
"""Latent space"""
model.add(Conv2D(512, (3,3), activation='relu', padding='same'))
"""Decoder - output (A,B)"""
...
model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))
Now i want to use ResNet as feature extractor and merge the output to Latent space.
I have already imported ResNet model as:
resnet50_imagnet_model = tf.keras.applications.resnet.ResNet50(weights = "imagenet",
include_top=False,
input_shape = (256, 256, 3),
pooling='max')
Encoder
"""Encoder - Input grayscale image (L)"""
encoder = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(256, 256, 1)))
...
Decoder
decoder = """Decoder - output (A,B)"""
...
Use tf.keras.Sequential() to merge all models
comb_model = tf.keras.Sequential(
[encoder,resnet50_imagnet_model, decoder]
)
I have a cnn network, which I'm trying to test.
I'm getting errors about the input, and I can't figure why
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(99,13,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(x_train, y_train, batch_size=4, epochs=10, verbose=1, validation_data=(x_test, y_test))
where:
x_train / test .shape = {tuple: 3}(30, 99, 13)
y_train / test shape = {tuple: 1}30
Error:
ValueError: Input 0 of layer sequential is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 99, 13]
What's wrong and how can I fix it ?
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(99,13,1)))
Model waiting for shape [batch, (99,13,1)], you are trying to feed [batch, 99, 13].
I think you need change your input to input_shape=(99,13) in order to match train data
Conv2D requires 4D+ shape
Expand dimension of your data to batch,99,13,1