Is it possible to create or access the gap history - optimization

In Julia JuMP, I am wondering whether it is possible to access an array, or similar, of the GAP history, the GAP improvements.
I know that at the end of the optimization, I can access the final gap with relative_gap(m) with m of type Model and I want the history of improvements over the solving process.
It could be for instance a vector of Float64 in percent: gaps=[20.2, 16.7, 13.8, 5.1, 0]. In such case my problem is solved to optimality as the final gap is 0.
At the end, I would like to plot the gap improvement in function of time of solving. So maybe all values of gaps could be a couple of two elements, the gap and the solving time until this new gap improvement?
Maybe this is not possible in JuMP so you could answer for Gurobi ?
Thanks!

The Gurobi callback solution has been answered by Oscar at another post - see Julia JUMP Gurobi MIP - query and store best objective and bound at runtime.
However, since Gurobi is very serious about its TimeLimit and has low times to continue computations there is also a simpler approach (this code assumes mo is your JuMP Gurobi model):
set_optimizer_attribute(mo, "TimeLimit", 2.0)
gap_history = Float64[]
max_steps = 1800
for t in 1:max_steps
optimize!(mo)
gap = MOI.get(mo, MOI.RelativeGap())
status=termination_status(mo)
push!(gap_history, gap)
gap > 0.01 || status == MOI.TIME_LIMIT || break
end

It's not possible using JuMP in general.
You could do this in Gurobi using a solver-specific callback: https://github.com/jump-dev/Gurobi.jl#callbacks
Or you could just parse the Gurobi log file that gets printed.
In general though, this information isn't all that useful as it can be quite noisy. Why do you want it?

Related

Getting "DUAL_INFEASIBLE" when solving a very simple linear programming problem

I am solving a simple LP problem using Gurobi with dual simplex and presolve. I get the model is unbounded but I couldn't see why such a model is unbounded. Can anyone help to tell me where goes wrong?
I attached the log and also the content in the .mps file.
Thanks very much in advance.
Kind regards,
Hongyu.
The output log and .mps file:
Link to the .mps file: https://studntnu-my.sharepoint.com/:u:/g/personal/hongyuzh_ntnu_no/EV5CBhH2VshForCL-EtPvBUBiFT8uZZkv-DrPtjSFi8PGA?e=VHktwf
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[arm])
Thread count: 8 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 1 rows, 579 columns and 575 nonzeros
Coefficient statistics:
Matrix range [3e-02, 5e+01]
Objective range [7e-01, 5e+01]
Bounds range [0e+00, 0e+00]
RHS range [7e+03, 7e+03]
Iteration Objective Primal Inf. Dual Inf. Time
0 handle free variables 0s
Solved in 0 iterations and 0.00 seconds (0.00 work units)
Unbounded model
The easiest way to debug this is to put a bound on the objective, so the model is no longer unbounded. Then inspect the solution. This is a super easy trick that somehow few people know about.
When we do this with a bound of 100000, we see:
phi = 100000.0000
gamma[11] = -1887.4290
(the rest zero). Indeed we can make gamma[11] as negative as we want to obey R0. Note that gamma[11] is not in the objective.
More advice: It is also useful to write out the LP file of the model and study that carefully. You probably would have caught the error and that would have prevented this post.

How Floyd Warshall algorithm works for N=500 within 1 second?

I am learning graph theory, and I found a problem Shortest Route II on CSES website.
https://cses.fi/problemset/task/1672/ is the problem.
I found the problem could be solved using Floyd Warshall Algorithm and the time complexity for the algorithm is O(n^3).
I am confused because here the constraints are N<=500, Time limit: 1s, so when N=500 the computations should be 500^3 = 125,000,000 and keeping in mind that in 1 second, 10^8 computations are performed, therefore it should at least take 1.25 seconds causing TLE, but the solution gets accepted. I want to learn what I am doing wrong in my calculations or understanding.

Worhp: Local point of infeasibility

I have a problem that is solved successfully with ipopt and fmincon. worhp terminates on local infeasibility. My x0 (init) is feasible.
This may happen with the interior point algorithm, but I expect sqp to always stay in the feasible zone?
Maybe also check the derivatives with WORHP by enabling CheckValuesDF, CheckValuesDG, CheckValuesHM, CheckStructureDF, CheckStructureDG and CheckStructureHM if you provide them. What I am pointing at is that WORHP requires a very special coordinate storage format (in particular for the Hessian). Mistakes here lead to false search directions.
Due to the approximation error of the QP subproblem this is not something you can expect in general. Consider the problem
which will have the QP subproblems
for a current x and Lagrangian multiplier lambda, as can be seen by determining the necessary derivatives. With initial values x_0 = 0 and lambda_0 = 1 we have a feasible initial guess. The first QP to be solved is then
which has the unique solution d = 2. Now, depending on the implemented linesearch, the full step might be taken, i.e. the next iterate is x_1 = x_0 + d. That means x_1 = 2 which is not a feasible point anymore. In fact, WORHP's SQP algorithm will iterate like this if you disable the par.InitialLMest and eventually find the global optimum at x = 1.
Apart from this fundamental property there can also be other effects leading to iterates leaving the feasible set, that will very much be specific to the actual solver implementation. For example numerical inaccuracies, difficulties during the solution of a QP or certain recovery strategies. As to why your problem is not solved successfully using the SQP algorithm of WORHP, I am unable to say much without knowing anything about the problem itself.

scipy.optimize.fmin_l_bfgs_b returns 'ABNORMAL_TERMINATION_IN_LNSRCH'

I am using scipy.optimize.fmin_l_bfgs_b to solve a gaussian mixture problem. The means of mixture distributions are modeled by regressions whose weights have to be optimized using EM algorithm.
sigma_sp_new, func_val, info_dict = fmin_l_bfgs_b(func_to_minimize, self.sigma_vector[si][pj],
args=(self.w_vectors[si][pj], Y, X, E_step_results[si][pj]),
approx_grad=True, bounds=[(1e-8, 0.5)], factr=1e02, pgtol=1e-05, epsilon=1e-08)
But sometimes I got a warning 'ABNORMAL_TERMINATION_IN_LNSRCH' in the information dictionary:
func_to_minimize value = 1.14462324063e-07
information dictionary: {'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 147, 'grad': array([ 1.77635684e-05, 2.87769808e-05, 3.51718654e-05,
6.75015599e-06, -4.97379915e-06, -1.06581410e-06]), 'nit': 0, 'warnflag': 2}
RUNNING THE L-BFGS-B CODE
* * *
Machine precision = 2.220D-16
N = 6 M = 10
This problem is unconstrained.
At X0 0 variables are exactly at the bounds
At iterate 0 f= 1.14462D-07 |proj g|= 3.51719D-05
* * *
Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value
* * *
N Tit Tnf Tnint Skip Nact Projg F
6 1 21 1 0 0 3.517D-05 1.145D-07
F = 1.144619474757747E-007
ABNORMAL_TERMINATION_IN_LNSRCH
Line search cannot locate an adequate point after 20 function
and gradient evaluations. Previous x, f and g restored.
Possible causes: 1 error in function or gradient evaluation;
2 rounding error dominate computation.
Cauchy time 0.000E+00 seconds.
Subspace minimization time 0.000E+00 seconds.
Line search time 0.000E+00 seconds.
Total User time 0.000E+00 seconds.
I do not get this warning every time, but sometimes. (Most get 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' or 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH').
I know that it means the minimum can be be reached in this iteration. I googled this problem. Someone said it occurs often because the objective and gradient functions do not match. But here I do not provide gradient function because I am using 'approx_grad'.
What are the possible reasons that I should investigate? What does it mean by "rounding error dominate computation"?
======
I also find that the log-likelihood does not monotonically increase:
########## Convergence !!! ##########
log_likelihood_history: [-28659.725891322563, 220.49993177669558, 291.3513633060345, 267.47745327823907, 265.31567762171181, 265.07311121000367, 265.04217683341682]
It usually start decrease at the second or the third iteration, even through 'ABNORMAL_TERMINATION_IN_LNSRCH' does not occurs. I do not know whether it this problem is related to the previous one.
Scipy calls the original L-BFGS-B implementation. Which is some fortran77 (old but beautiful and superfast code) and our problem is that the descent direction is actually going up. The problem starts on line 2533 (link to the code at the bottom)
gd = ddot(n,g,1,d,1)
if (ifun .eq. 0) then
gdold=gd
if (gd .ge. zero) then
c the directional derivative >=0.
c Line search is impossible.
if (iprint .ge. 0) then
write(0,*)' ascent direction in projection gd = ', gd
endif
info = -4
return
endif
endif
In other words, you are telling it to go down the hill by going up the hill. The code tries something called line search a total of 20 times in the descent direction that you provide and realizes that you are NOT telling it to go downhill, but uphill. All 20 times.
The guy who wrote it (Jorge Nocedal, who by the way is a very smart guy) put 20 because pretty much that's enough. Machine epsilon is 10E-16, I think 20 is actually a little too much. So, my money for most people having this problem is that your gradient does not match your function.
Now, it could also be that "2. rounding errors dominate computation". By this, he means that your function is a very flat surface in which increases are of the order of machine epsilon (in which case you could perhaps rescale the function),
Now, I was thiking that maybe there should be a third option, when your function is too weird. Oscillations? I could see something like $\sin({\frac{1}{x}})$ causing this kind of problem. But I'm not a smart guy, so don't assume that there's a third case.
So I think the OP's solution should be that your function is too flat. Or look at the fortran code.
https://github.com/scipy/scipy/blob/master/scipy/optimize/lbfgsb/lbfgsb.f
Here's line search for those who want to see it. https://en.wikipedia.org/wiki/Line_search
Note. This is 7 months too late. I put it here for future's sake.
As pointed out in the answer by Wilmer E. Henao, the problem is probably in the gradient. Since you are using approx_grad=True, the gradient is calculated numerically. In this case, reducing the value of epsilon, which is the step size used for numerically calculating the gradient, can help.
I also got the error "ABNORMAL_TERMINATION_IN_LNSRCH" using the L-BFGS-B optimizer.
While my gradient function pointed in the right direction, I rescaled the actual gradient of the function by its L2-norm. Removing that or adding another appropriate type of rescaling worked. Before, I guess that the gradient was so large that it went out of bounds immediately.
The problem from OP was unbounded if I read correctly, so this will certainly not help in this problem setting. However, googling the error "ABNORMAL_TERMINATION_IN_LNSRCH" yields this page as one of the first results, so it might help others...
I had a similar problem recently. I sometimes encounter the ABNORMAL_TERMINATION_IN_LNSRCH message after using fmin_l_bfgs_b function of scipy. I try to give additional explanations of the reason why I get this. I am looking for complementary details or corrections if I am wrong.
In my case, I provide the gradient function, so approx_grad=False. My cost function and the gradient are consistent. I double-checked it and the optimization actually works most of the time. When I get ABNORMAL_TERMINATION_IN_LNSRCH, the solution is not optimal, not even close (even this is a subjective point of view). I can overcome this issue by modifying the maxls argument. Increasing maxls helps to solve this issue to finally get the optimal solution. However, I noted that sometimes a smaller maxls, than the one that produces ABNORMAL_TERMINATION_IN_LNSRCH, results in a converging solution. A dataframe summarizes the results. I was surprised to observe this. I expected that reducing maxls would not improve the result. For this reason, I tried to read the paper describing the line search algorithm but I had trouble to understand it.
The line "search algorithm generates a sequence of
nested intervals {Ik} and a sequence of iterates αk ∈ Ik ∩ [αmin ; αmax] according to the [...] procedure". If I understand well, I would say that the maxls argument specifies the length of this sequence. At the end of the maxls iterations (or less if the algorithm terminates in fewer iterations), the line search stops. A final trial point is generated within the final interval Imaxls. I would say the the formula does not guarantee to get an αmaxls that respects the two update conditions, the minimum decrease and the curvature, especially when the interval is still wide. My guess is that in my case, after 11 iterations the generated interval I11 is such that a trial point α11 respects both conditions. But, even though I12 is smaller and still containing acceptable points, α12 is not. Finally after 24 iterations, the interval is very small and the generated αk respects the update conditions.
Is my understanding / explanation accurate?
If so, I would then be surprised that when maxls=12, since the generated α11 is acceptable but not α12, why α11 is not chosen in this case instead of α12?
Pragmatically, I would recommend to try a few higher maxls when getting ABNORMAL_TERMINATION_IN_LNSRCH.

Combinatorial optimization for puzzle solving

My problem is explained in the following image
http://i.stack.imgur.com/n6mZt.png
I have a finite (but rather large) amount of such pieces that need to be stacked in a way so that the REMAINING area is the smallest possible. The pieces are locked in the horizontal axis (time) and have fixed height. They can only be stacked.
The remaining area is defined by the maximum point of the stack that depends on which pieces have been selected. The best combination in the example image would be the [1 1 0]. (The trivial [0 0 0] case will not be allowed by other constraints)
My only variables are binaries (Yes or No) for each piece. The objective is a little more complicated than what I am describing, but my greatest problem right now is how to formulate the expression
Max{Stacked_Pieces} - Stacked_Pieces_Profile
in the objective function. The result of this expression is a vector of course (timeseries) but it will be further reduced to a number through other manipulations.
Essentially my problem is how to write
Max{A} - A, where A = 1xN vector
In a way compatible with a linear (or even quadratic) objective. Or am I dealing with a non-linear problem?
EDIT: The problem is like a Knapsack problem the main difference being that there is no knapsack to fill up. i.e. the size of the knapsack varies according to the selected pieces and is always equal to the top of the stacked profile
Thanks everybody!
From what I understand you can basically try to solve it as a normal knapsack problem in multiple iterations, finding the minimal.
Now, finding the height of the knapsack is a problem, which means you need multiple iterations. Because you need to solve the knapsack problem to see if a certain height will work, you need multiple iterations.
Note that you do know an upper and a lower bound for the height. I'm not sure if rotation is applicable, but you can fill in the gaps here:
Min = max(max height of smallest piece, total size / width)
Max = sum(height of all pieces).
Basically solving it means finding the smallest height [Min <= x <= Max] that fits all pieces. The easiest way to do that is by using a 'for' loop, but you can do it better:
Try min, max, half
if half fits -> max = half; iterate (goto 1)
if half doesn't fit -> min = half; iterate (goto 1)
As for solving the knapsack problem, for each iteration, I'd check if all pieces can still be fitted. Use bit-masks and AND/OR/XOR operations if you can to speed things up.
Basically you can do it like this:
Grab bit 'x'. Fill with next block
Check if this leads to a possible solution
Find next bit that can be filled
Note that you might want to use intrinsics in C++ to speed this up. Modern CPU's are quite good with this.
As for code: I've made some code that solves the bedlam cube in the past; I'm pretty sure that if you google for that, you'll find some fast solvers.
Good luck!