I am trying to download CELEB-A by tensorflow_datasets (version: 4.5.2) and getting an API error. How can I fix it?
I have update the tensorflow_datasets but the issue does does not fix.
My code is:
import tensorflow_datasets as tf ds
dataset_builder = tfds.builder('celeb_a')
dataset_builder.download_and_prepare()
I am getting the following error:
Downloading and preparing dataset 1.38 GiB (download: 1.38 GiB, generated: 1.62 GiB, total: 3.00 GiB) to /root/tensorflow_datasets/celeb_a/2.0.1...
Dl Size...: 0 MiB [00:00, ? MiB/s] | 0/4 [00:00<?, ? url/s]
Dl Completed...: 0%| | 0/4 [00:00<?, ? url/s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/dataset_builder.py", line 464, in download_and_prepare
download_config=download_config,
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/dataset_builder.py", line 1158, in _download_and_prepare
dl_manager, **optional_pipeline_kwargs)
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/image/celeba.py", line 129, in _split_generators
"landmarks_celeba": LANDMARKS_DATA,
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/download/download_manager.py", line 549, in download
return _map_promise(self._download, url_or_urls)
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/download/download_manager.py", line 767, in _map_promise
res = tf.nest.map_structure(lambda p: p.get(), all_promises) # Wait promises
File "/miniconda/lib/python3.7/site-packages/tensorflow/python/util/nest.py", line 867, in map_structure
structure[0], [func(*x) for x in entries],
File "/miniconda/lib/python3.7/site-packages/tensorflow/python/util/nest.py", line 867, in <listcomp>
structure[0], [func(*x) for x in entries],
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/download/download_manager.py", line 767, in <lambda>
res = tf.nest.map_structure(lambda p: p.get(), all_promises) # Wait promises
File "/miniconda/lib/python3.7/site-packages/promise/promise.py", line 512, in get
return self._target_settled_value(_raise=True)
File "/miniconda/lib/python3.7/site-packages/promise/promise.py", line 516, in _target_settled_value
return self._target()._settled_value(_raise)
File "/miniconda/lib/python3.7/site-packages/promise/promise.py", line 226, in _settled_value
reraise(type(raise_val), raise_val, self._traceback)
File "/miniconda/lib/python3.7/site-packages/six.py", line 703, in reraise
raise value
File "/miniconda/lib/python3.7/site-packages/promise/promise.py", line 844, in handle_future_result
resolve(future.result())
File "/miniconda/lib/python3.7/concurrent/futures/_base.py", line 428, in result
return self.__get_result()
File "/miniconda/lib/python3.7/concurrent/futures/_base.py", line 384, in __get_result
raise self._exception
File "/miniconda/lib/python3.7/concurrent/futures/thread.py", line 57, in run
result = self.fn(*self.args, **self.kwargs)
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/download/downloader.py", line 216, in _sync_download
with _open_url(url, verify=verify) as (response, iter_content):
File "/miniconda/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/download/downloader.py", line 276, in _open_with_requests
url = _get_drive_url(url, session)
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/download/downloader.py", line 298, in _get_drive_url
_assert_status(response)
File "/miniconda/lib/python3.7/site-packages/tensorflow_datasets/core/download/downloader.py", line 310, in _assert_status
response.url, response.status_code))
tensorflow_datasets.core.download.downloader.DownloadError: Failed to get url https://drive.google.com/uc?export=download&id=0B7EVK8r0v71pZjFTYXZWM3FlRnM. HTTP code: 404.
It seems the link is broken hence this error is shown while fetching this celeb_a tensorflow dataset. However you can download this dataset manually using this link till we fix that error, .
Related
I'm new to deepfakes and I'm trying to do the 5XSeg) train.bat and everytime it finishes the filtering I get the following error. I use wf, and tried batch sizes from 1-8, always the same result. I have a Ryzen 5 3600, a 3080 Ti and 16 GB of RAM.
Using 26519 xseg labeled samples.
Traceback (most recent call last):
File "multiprocessing\queues.py", line 234, in _feed
File "multiprocessing\reduction.py", line 51, in dumps
MemoryError
Error:
Traceback (most recent call last):
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1375, in _do_call
return fn(*args)
Traceback (most recent call last):
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1360, in _run_fn
target_list, run_metadata)
File "multiprocessing\queues.py", line 234, in _feed
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1453, in _call_tf_sessionrun
run_metadata)
File "multiprocessing\reduction.py", line 51, in dumps
tensorflow.python.framework.errors_impl.InternalError: 2 root error(s) found.
(0) Internal: Attempting to perform BLAS operation using StreamExecutor without BLAS support
[[{{node MatMul}}]]
[[concat_6/concat/_3]]
(1) Internal: Attempting to perform BLAS operation using StreamExecutor without BLAS support
[[{{node MatMul}}]]
0 successful operations.
0 derived errors ignored.
MemoryError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 263, in update_sample_for_preview
self.get_history_previews()
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 383, in get_history_previews
return self.onGetPreview (self.sample_for_preview, for_history=True)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_XSeg\Model.py", line 209, in onGetPreview
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_XSeg\Model.py", line 141, in view
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 968, in run
run_metadata_ptr)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run
feed_dict_tensor, options, run_metadata)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1369, in _do_run
run_metadata)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1394, in _do_call
raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.InternalError: 2 root error(s) found.
(0) Internal: Attempting to perform BLAS operation using StreamExecutor without BLAS support
[[node MatMul (defined at E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Dense.py:66) ]]
[[concat_6/concat/_3]]
(1) Internal: Attempting to perform BLAS operation using StreamExecutor without BLAS support
[[node MatMul (defined at E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Dense.py:66) ]]
0 successful operations.
0 derived errors ignored.
Errors may have originated from an input operation.
Input Source operations connected to node MatMul:
XSeg/dense1/weight/read (defined at E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Dense.py:47)
Reshape_60 (defined at E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py:182)
Input Source operations connected to node MatMul:
XSeg/dense1/weight/read (defined at E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Dense.py:47)
Reshape_60 (defined at E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py:182)
Original stack trace for 'MatMul':
File "threading.py", line 884, in _bootstrap
File "threading.py", line 916, in _bootstrap_inner
File "threading.py", line 864, in run
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
debug=debug)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_XSeg\Model.py", line 17, in __init__
super().__init__(*args, force_model_class_name='XSeg', **kwargs)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
self.on_initialize()
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_XSeg\Model.py", line 103, in on_initialize
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\facelib\XSegNet.py", line 85, in flow
return self.model(x, pretrain=pretrain)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\XSeg.py", line 124, in forward
x = self.dense1(x)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
return self.forward(*args, **kwargs)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Dense.py", line 66, in forward
x = tf.matmul(x, weight)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper
return target(*args, **kwargs)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\math_ops.py", line 3655, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 5713, in mat_mul
name=name)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal
op_def=op_def)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__
self._traceback = tf_stack.extract_stack_for_node(self._c_op)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
debug=debug)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_XSeg\Model.py", line 17, in __init__
super().__init__(*args, force_model_class_name='XSeg', **kwargs)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 216, in __init__
self.update_sample_for_preview(choose_preview_history=self.choose_preview_history)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 265, in update_sample_for_preview
self.sample_for_preview = self.generate_next_samples()
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 461, in generate_next_samples
sample.append ( generator.generate_next() )
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\samplelib\SampleGeneratorBase.py", line 21, in generate_next
self.last_generation = next(self)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\samplelib\SampleGeneratorFace.py", line 112, in __next__
return next(generator)
File "E:\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\joblib\SubprocessGenerator.py", line 73, in __next__
gen_data = self.cs_queue.get()
File "multiprocessing\queues.py", line 94, in get
File "multiprocessing\connection.py", line 216, in recv_bytes
File "multiprocessing\connection.py", line 318, in _recv_bytes
File "multiprocessing\connection.py", line 344, in _get_more_data
MemoryError
Reducing the batch size didn't help as well as increasing the page file. I tried to Google it but I couldn't find a solution.
I'm trying to run on cloud this deep learning model:
https://github.com/razvanmarinescu/brgm#image-reconstruction-with-pre-trained-stylegan2-generators
What I do is simply utilizing their Colab Notebook: https://colab.research.google.com/drive/1G7_CGPHZVGFWIkHOAke4HFg06-tNHIZ4?usp=sharing#scrollTo=qMgE6QFiHuSL
When I try to exectute:
!python recon.py recon-real-images --input=/content/drive/MyDrive/boeing/EDGEconnect/val_imgs --masks=/content/drive/MyDrive/boeing/EDGEconnect/val_masks --tag=brains --network=dropbox:brains.pkl --recontype=inpaint --num-steps=1000 --num-snapshots=1
I receive this error:
args: Namespace(command='recon-real-images', input='/content/drive/MyDrive/boeing/EDGEconnect/val_imgs', masks='/content/drive/MyDrive/boeing/EDGEconnect/val_masks', network_pkl='dropbox:brains.pkl', num_snapshots=1, num_steps=1000, recontype='inpaint', superres_factor=4, tag='brains')
Local submit - run_dir: results/00004-brains-inpaint
dnnlib: Running recon.recon_real_images() on localhost...
Processing image 1/4
Loading networks from "dropbox:brains.pkl"...
Setting up TensorFlow plugin "fused_bias_act.cu": Preprocessing... Loading... Failed!
Traceback (most recent call last):
File "recon.py", line 270, in <module>
main()
File "recon.py", line 263, in main
dnnlib.submit_run(sc, func_name_map[subcmd], **kwargs)
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/submission/submit.py", line 343, in submit_run
return farm.submit(submit_config, host_run_dir)
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/submission/internal/local.py", line 22, in submit
return run_wrapper(submit_config)
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/submission/submit.py", line 280, in run_wrapper
run_func_obj(**submit_config.run_func_kwargs)
File "/content/drive/MyDrive/boeing/brgm/brgm/recon.py", line 189, in recon_real_images
recon_real_one_img(network_pkl, img_list[image_idx], masks, num_snapshots, recontype, superres_factor, num_steps)
File "/content/drive/MyDrive/boeing/brgm/brgm/recon.py", line 132, in recon_real_one_img
_G, _D, Gs = pretrained_networks.load_networks(network_pkl)
File "/content/drive/MyDrive/boeing/brgm/brgm/pretrained_networks.py", line 83, in load_networks
G, D, Gs = pickle.load(stream, encoding='latin1')
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/network.py", line 297, in __setstate__
self._init_graph()
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/network.py", line 154, in _init_graph
out_expr = self._build_func(*self.input_templates, **build_kwargs)
File "<string>", line 395, in G_synthesis_stylegan2
File "<string>", line 359, in layer
File "<string>", line 106, in modulated_conv2d_layer
File "<string>", line 75, in apply_bias_act
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/ops/fused_bias_act.py", line 68, in fused_bias_act
return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/ops/fused_bias_act.py", line 122, in _fused_bias_act_cuda
cuda_kernel = _get_plugin().fused_bias_act
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/ops/fused_bias_act.py", line 16, in _get_plugin
return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
File "/content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/custom_ops.py", line 156, in get_plugin
plugin = tf.load_op_library(bin_file)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/load_library.py", line 61, in load_op_library
lib_handle = py_tf.TF_LoadLibrary(library_filename)
tensorflow.python.framework.errors_impl.NotFoundError: /content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/_cudacache/fused_bias_act_237d55aca3e3c3ec0547da06888d8e66.so: undefined symbol: _ZN10tensorflow12OpDefBuilder4AttrENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE
I found that the very last part of an error:
tensorflow.python.framework.errors_impl.NotFoundError: /content/drive/MyDrive/boeing/brgm/brgm/dnnlib/tflib/_cudacache/fused_bias_act_237d55aca3e3c3ec0547da06888d8e66.so: undefined symbol: _ZN10tensorflow12OpDefBuilder4AttrENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE
Can be solved by changing a flag in Cuda Makefile: https://github.com/mgharbi/hdrnet_legacy/issues/2 or by installing tf 1.14(colab runs on 1.15.2 and this change made no positive effect).
My question is, how can I get rid of this error, is there an option to change smth inside Google Colab's Cuda Makefile?
I have a dataset of size around 270MB and I use the following to write to feather file:
df.reset_index().to_feather(feather_path)
This gives me an error :
File "C:\apps\Python\lib\site-packages\pandas\util\_decorators.py", line 207, in wrapper
return func(*args, **kwargs)
File "C:\apps\Python\lib\site-packages\pandas\core\frame.py", line 2519, in to_feather
to_feather(self, path, **kwargs)
File "C:\apps\Python\lib\site-packages\pandas\io\feather_format.py", line 87, in to_feather
feather.write_feather(df, handles.handle, **kwargs)
File "C:\apps\Python\lib\site-packages\pyarrow\feather.py", line 152, in write_feather
table = Table.from_pandas(df, preserve_index=False)
File "pyarrow\table.pxi", line 1553, in pyarrow.lib.Table.from_pandas
File "C:\apps\Python\lib\site-packages\pyarrow\pandas_compat.py", line 607, in dataframe_to_arrays
arrays[i] = maybe_fut.result()
File "C:\apps\Python\lib\concurrent\futures\_base.py", line 438, in result
return self.__get_result()
File "C:\apps\Python\lib\concurrent\futures\_base.py", line 390, in __get_result
raise self._exception
File "C:\apps\Python\lib\concurrent\futures\thread.py", line 52, in run
result = self.fn(*self.args, **self.kwargs)
File "C:\apps\Python\lib\site-packages\pyarrow\pandas_compat.py", line 575, in convert_column
result = pa.array(col, type=type_, from_pandas=True, safe=safe)
File "pyarrow\array.pxi", line 302, in pyarrow.lib.array
File "pyarrow\array.pxi", line 83, in pyarrow.lib._ndarray_to_array
File "pyarrow\error.pxi", line 114, in pyarrow.lib.check_status
pyarrow.lib.ArrowMemoryError: realloc of size 3221225472 failed
Note : This works well in PyCharm. No issues writing the feather file.
But when the python program is called in a Windows batch file like:
call python "myprogram.py"
and when I schedule the batch file in a task using Task Scheduler it fails with above memory error.
PyArrow version is 5.0.0 if that helps.
Any ideas please?
I am new to rasa . I installed rasa 2.4.1 in my windows 10, python 3.7.6 machine without any error . But when I initialise rasa project I get following error . I tried with multiple rasa2.x versions and multiple tensorflow installations . But no luck . Any help to resolve this issue is appreciated .
File "D:\NLP\rasa_env\Scripts\rasa.exe\__main__.py", line 7, in <module>
File "d:\nlp\rasa_env\lib\site-packages\rasa\__main__.py", line 116, in main
cmdline_arguments.func(cmdline_arguments)
File "d:\nlp\rasa_env\lib\site-packages\rasa\cli\scaffold.py", line 234, in run
init_project(args, path)
File "d:\nlp\rasa_env\lib\site-packages\rasa\cli\scaffold.py", line 129, in init_project
print_train_or_instructions(args, path)
File "d:\nlp\rasa_env\lib\site-packages\rasa\cli\scaffold.py", line 68, in print_train_or_instructions
training_result = rasa.train(domain, config, training_files, output)
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 109, in train
loop,
File "d:\nlp\rasa_env\lib\site-packages\rasa\utils\common.py", line 308, in run_in_loop
result = loop.run_until_complete(f)
File "c:\users\kni9kor\anaconda3\lib\asyncio\base_events.py", line 583, in run_until_complete
return future.result()
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 174, in train_async
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 353, in _train_async_internal
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 396, in _do_training
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 818, in _train_nlu_with_validated_data
**additional_arguments,
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\train.py", line 116, in train
interpreter = trainer.train(training_data, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\model.py", line 209, in train
updates = component.train(working_data, self.config, **context)
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 810, in train
self.model = self._instantiate_model_class(model_data)
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 1132, in _instantiate_model_class
config=self.component_config,
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 1146, in __init__
super().__init__("DIET", config, data_signature, label_data)
File "d:\nlp\rasa_env\lib\site-packages\rasa\utils\tensorflow\models.py", line 705, in __init__
checkpoint_model=config[CHECKPOINT_MODEL],
File "d:\nlp\rasa_env\lib\site-packages\rasa\utils\tensorflow\models.py", line 91, in __init__
super().__init__(**kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\training\tracking\base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\keras\engine\training.py", line 308, in __init__
self._init_batch_counters()
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\training\tracking\base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\keras\engine\training.py", line 317, in _init_batch_counters
self._train_counter = variables.Variable(0, dtype='int64', aggregation=agg)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 262, in __call__
return cls._variable_v2_call(*args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 256, in _variable_v2_call
shape=shape)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 237, in <lambda>
previous_getter = lambda **kws: default_variable_creator_v2(None, **kws)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 2646, in default_variable_creator_v2
shape=shape)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 264, in __call__
return super(VariableMetaclass, cls).__call__(*args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 1518, in __init__
distribute_strategy=distribute_strategy)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 1666, in _init_from_args
graph_mode=self._in_graph_mode)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 243, in eager_safe_variable_handle
shape, dtype, shared_name, name, graph_mode, initial_value)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 175, in _variable_handle_from_shape_and_dtype
math_ops.logical_not(exists), [exists], name="EagerVariableNameReuse")
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\gen_logging_ops.py", line 49, in _assert
_ops.raise_from_not_ok_status(e, name)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\framework\ops.py", line 6843, in raise_from_not_ok_status
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: assertion failed: [0] [Op:Assert] name: EagerVariableNameReuse
Possible Solutions:
1.Kill Concurrent python programs (like Jupyter notebooks) that is trying to access Tensorflow simultaneously.
2.Setting the environment variable TF_FORCE_GPU_ALLOW_GROWTH to true seems to make this issue disapper:
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = "true"
I have also attached following similar issues for reference which might help you out. link1 , link2, link3
I am trying to install numpy but it is giving this error please help what should I do ?
ERROR: Exception:
Traceback (most recent call last):
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_vendor\urllib3\response.py", line 425, in _error_catcher
yield
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_vendor\urllib3\response.py", line 507, in read
data = self._fp.read(amt) if not fp_closed else b""
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 62, in read
data = self.__fp.read(amt)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\http\client.py", line 454, in read
n = self.readinto(b)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\http\client.py", line 498, in readinto
n = self.fp.readinto(b)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\socket.py", line 669, in readinto
return self._sock.recv_into(b)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\ssl.py", line 1241, in recv_into
return self.read(nbytes, buffer)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\ssl.py", line 1099, in read
return self._sslobj.read(len, buffer)
socket.timeout: The read operation timed out
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\cli\base_command.py", line 186, in _main
status = self.run(options, args)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\commands\install.py", line 331, in run
resolver.resolve(requirement_set)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\legacy_resolve.py", line 177, in resolve
discovered_reqs.extend(self._resolve_one(requirement_set, req))
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\legacy_resolve.py", line 333, in _resolve_one
abstract_dist = self._get_abstract_dist_for(req_to_install)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\legacy_resolve.py", line 282, in _get_abstract_dist_for
abstract_dist = self.preparer.prepare_linked_requirement(req)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\operations\prepare.py", line 480, in prepare_linked_requirement
local_path = unpack_url(
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\operations\prepare.py", line 282, in unpack_url
return unpack_http_url(
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\operations\prepare.py", line 158, in unpack_http_url
from_path, content_type = _download_http_url(
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\operations\prepare.py", line 303, in _download_http_url
for chunk in download.chunks:
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\utils\ui.py", line 160, in iter
for x in it:
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_internal\network\utils.py", line 15, in response_chunks
for chunk in response.raw.stream(
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_vendor\urllib3\response.py", line 564, in stream
data = self.read(amt=amt, decode_content=decode_content)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_vendor\urllib3\response.py", line 529, in read
raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\contextlib.py", line 131, in __exit__
self.gen.throw(type, value, traceback)
File "c:\users\cutea\appdata\local\programs\python\python38-32\lib\site-packages\pip\_vendor\urllib3\response.py", line 430, in _error_catcher
raise ReadTimeoutError(self._pool, None, "Read timed out.")
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.
Look directly at the last line :
Read timed out
Connect to wifi or faster internet and try again.
my internet connection was poor then i got this error. Then i tried it with faster connection and it worked for me...