I used the Bitmap package to generate a custom verification code, how can I make the image it generates bigger and clearer. How is this done? Thanks for your help again.
enter image description here
I goole some answers and none seem to have good results
optimizing bitmap loading by using aSyncTask
Try the following code, modify the picture to JPEG format, it can reduce the size of the picture and it is relatively clear.
static void ImgTestTwo()
{
string filename = #"E:\CoreWork\backone.jpg";
string targetname = #"E:\CoreWork\temp1.jpg";
Bitmap bitmap = new Bitmap(filename);
//Keep the ratio of the image unchanged, zoom the image
int width = 1000,
height = 1000;
if (bitmap.Width > bitmap.Height)
{
//Width is large, calculate height
height = Convert.ToInt32(width * (bitmap.Height * 1.0 / bitmap.Width));
}
else
{
//height is large, calculate width
width = Convert.ToInt32(height * (bitmap.Width * 1.0 / bitmap.Height));
}
Bitmap result = ResizeImage(bitmap, width, height);
filename = filename.Substring(0,filename.LastIndexOf('.'))+".jpg";
//Save the picture and specify the save format as Jpeg, which will take up less space
result.Save(targetname,ImageFormat.Jpeg);
result.Dispose();
bitmap.Dispose();
}
/// <summary>
/// Resize img
/// </summary>
/// <param name="bmp">original Bitmap </param>
/// <param name="newW">new width</param>
/// <param name="newH">new heights</param>
/// <returns>Process later pictures</returns>
public static Bitmap ResizeImage(Bitmap bmp, int newW, int newH)
{
try
{
Bitmap b = new Bitmap(newW, newH);
Graphics g = Graphics.FromImage(b);
// The quality of the interpolation algorithm
//g.InterpolationMode = InterpolationMode.NearestNeighbor;
g.DrawImage(bmp, new Rectangle(0, 0, newW, newH), new Rectangle(0, 0, bmp.Width, bmp.Height), GraphicsUnit.Pixel);
g.Dispose();
return b;
}
catch(Exception ex)
{
return null;
}
}
Related
On the tensorflow lite example object detection, the camera don't take all the screen but just a part.
I tried to find some constant in CameraActivity, CameraConnectionFragment and Size classes but no results.
So I just want a way to put the camera in all the screen or just an explanation.
Thanks you.
I just find the solution, it's in the CameraConnectionFragment class :
protected static Size chooseOptimalSize(final Size[] choices, final int width, final int height) {
final int minSize = Math.max(Math.min(width, height), MINIMUM_PREVIEW_SIZE);
final Size desiredSize = new Size(1280, 720);
protected static Size chooseOptimalSize(final Size[] choices, final int width, final int height) {
final int minSize = Math.max(Math.min(width, height), MINIMUM_PREVIEW_SIZE);
final Size desiredSize = new Size(1280, 720);
// Collect the supported resolutions that are at least as big as the preview Surface
boolean exactSizeFound = false;
final List<Size> bigEnough = new ArrayList<Size>();
final List<Size> tooSmall = new ArrayList<Size>();
for (final Size option : choices) {
if (option.equals(desiredSize)) {
// Set the size but don't return yet so that remaining sizes will still be logged.
exactSizeFound = true;
}
if (option.getHeight() >= minSize && option.getWidth() >= minSize) {
bigEnough.add(option);
} else {
tooSmall.add(option);
}
}
just replace 1280, 720 by what we want.
I want to write text vertically inside of a border element. As shown in this picture.
I've tried using RenderTransform with this code
<Border Width="80"
Background="Teal">
<TextBlock Text="CATEGORIES"
Foreground="White"
FontFamily="Segoe UI Black"
FontSize="30">
<TextBlock.RenderTransform>
<RotateTransform Angle="-90" />
</TextBlock.RenderTransform>
</TextBlock>
</Border>
This rotates the text vertically but the TextBlock takes the old values of height and width before Transform and doesn't display the text completely. So the text is cut off after 80 pixels (width of the border element). While searching I found using LayoutTransform can solve the problem but it is not available in UWP apps. How to do this in UWP XAML?
This worked for me on UWP as well. Just use the class posted here instead of the one from the post. And also copy the style from the blog post.
EDIT: The onedrive link no longer works. So I am posting the code here.
Create a new class LayoutTransformer
using System;
using System.Diagnostics.CodeAnalysis;
using Windows.Foundation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;
namespace Common
{
/// <summary>
/// Represents a control that applies a layout transformation to its Content.
/// </summary>
/// <QualityBand>Preview</QualityBand>
[TemplatePart(Name = TransformRootName, Type = typeof(Grid))]
[TemplatePart(Name = PresenterName, Type = typeof(ContentPresenter))]
public sealed class LayoutTransformer : ContentControl
{
/// <summary>
/// Name of the TransformRoot template part.
/// </summary>
private const string TransformRootName = "TransformRoot";
/// <summary>
/// Name of the Presenter template part.
/// </summary>
private const string PresenterName = "Presenter";
/// <summary>
/// Gets or sets the layout transform to apply on the LayoutTransformer
/// control content.
/// </summary>
/// <remarks>
/// Corresponds to UIElement.LayoutTransform.
/// </remarks>
public Transform LayoutTransform
{
get { return (Transform)GetValue(LayoutTransformProperty); }
set { SetValue(LayoutTransformProperty, value); }
}
/// <summary>
/// Identifies the LayoutTransform DependencyProperty.
/// </summary>
public static readonly DependencyProperty LayoutTransformProperty = DependencyProperty.Register(
"LayoutTransform", typeof(Transform), typeof(LayoutTransformer), new PropertyMetadata(null, LayoutTransformChanged));
/// <summary>
/// Gets the child element being transformed.
/// </summary>
private FrameworkElement Child
{
get
{
// Preferred child is the content; fall back to the presenter itself
return (null != _contentPresenter) ?
(_contentPresenter.Content as FrameworkElement ?? _contentPresenter) :
null;
}
}
// Note: AcceptableDelta and DecimalsAfterRound work around double arithmetic rounding issues on Silverlight.
private const double AcceptableDelta = 0.0001;
private const int DecimalsAfterRound = 4;
private Panel _transformRoot;
private ContentPresenter _contentPresenter;
private MatrixTransform _matrixTransform;
private Matrix _transformation;
private Size _childActualSize = Size.Empty;
public LayoutTransformer()
{
// Associated default style
DefaultStyleKey = typeof(LayoutTransformer);
// Can't tab to LayoutTransformer
IsTabStop = false;
#if SILVERLIGHT
// Disable layout rounding because its rounding of values confuses things
UseLayoutRounding = false;
#endif
}
/// <summary>
/// Builds the visual tree for the LayoutTransformer control when a new
/// template is applied.
/// </summary>
protected override void OnApplyTemplate()
{
// Apply new template
base.OnApplyTemplate();
// Find template parts
_transformRoot = GetTemplateChild(TransformRootName) as Grid;
_contentPresenter = GetTemplateChild(PresenterName) as ContentPresenter;
_matrixTransform = new MatrixTransform();
if (null != _transformRoot)
{
_transformRoot.RenderTransform = _matrixTransform;
}
// Apply the current transform
ApplyLayoutTransform();
}
/// <summary>
/// Handles changes to the Transform DependencyProperty.
/// </summary>
/// <param name="o">Source of the change.</param>
/// <param name="e">Event args.</param>
private static void LayoutTransformChanged(DependencyObject o, DependencyPropertyChangedEventArgs e)
{
// Casts are safe because Silverlight is enforcing the types
((LayoutTransformer)o).ProcessTransform((Transform)e.NewValue);
}
/// <summary>
/// Applies the layout transform on the LayoutTransformer control content.
/// </summary>
/// <remarks>
/// Only used in advanced scenarios (like animating the LayoutTransform).
/// Should be used to notify the LayoutTransformer control that some aspect
/// of its Transform property has changed.
/// </remarks>
public void ApplyLayoutTransform()
{
ProcessTransform(LayoutTransform);
}
/// <summary>
/// Processes the Transform to determine the corresponding Matrix.
/// </summary>
/// <param name="transform">Transform to process.</param>
private void ProcessTransform(Transform transform)
{
// Get the transform matrix and apply it
_transformation = RoundMatrix(GetTransformMatrix(transform), DecimalsAfterRound);
if (null != _matrixTransform)
{
_matrixTransform.Matrix = _transformation;
}
// New transform means re-layout is necessary
InvalidateMeasure();
}
/// <summary>
/// Walks the Transform(Group) and returns the corresponding Matrix.
/// </summary>
/// <param name="transform">Transform(Group) to walk.</param>
/// <returns>Computed Matrix.</returns>
private Matrix GetTransformMatrix(Transform transform)
{
if (null != transform)
{
// WPF equivalent of this entire method:
// return transform.Value;
// Process the TransformGroup
TransformGroup transformGroup = transform as TransformGroup;
if (null != transformGroup)
{
Matrix groupMatrix = Matrix.Identity;
foreach (Transform child in transformGroup.Children)
{
groupMatrix = MatrixMultiply(groupMatrix, GetTransformMatrix(child));
}
return groupMatrix;
}
// Process the RotateTransform
RotateTransform rotateTransform = transform as RotateTransform;
if (null != rotateTransform)
{
double angle = rotateTransform.Angle;
double angleRadians = (2 * Math.PI * angle) / 360;
double sine = Math.Sin(angleRadians);
double cosine = Math.Cos(angleRadians);
return new Matrix(cosine, sine, -sine, cosine, 0, 0);
}
// Process the ScaleTransform
ScaleTransform scaleTransform = transform as ScaleTransform;
if (null != scaleTransform)
{
double scaleX = scaleTransform.ScaleX;
double scaleY = scaleTransform.ScaleY;
return new Matrix(scaleX, 0, 0, scaleY, 0, 0);
}
// Process the SkewTransform
SkewTransform skewTransform = transform as SkewTransform;
if (null != skewTransform)
{
double angleX = skewTransform.AngleX;
double angleY = skewTransform.AngleY;
double angleXRadians = (2 * Math.PI * angleX) / 360;
double angleYRadians = (2 * Math.PI * angleY) / 360;
return new Matrix(1, angleYRadians, angleXRadians, 1, 0, 0);
}
// Process the MatrixTransform
MatrixTransform matrixTransform = transform as MatrixTransform;
if (null != matrixTransform)
{
return matrixTransform.Matrix;
}
// TranslateTransform has no effect in LayoutTransform
}
// Fall back to no-op transformation
return Matrix.Identity;
}
/// <summary>
/// Provides the behavior for the "Measure" pass of layout.
/// </summary>
/// <param name="availableSize">The available size that this element can give to child elements.</param>
/// <returns>The size that this element determines it needs during layout, based on its calculations of child element sizes.</returns>
protected override Size MeasureOverride(Size availableSize)
{
FrameworkElement child = Child;
if ((null == _transformRoot) || (null == child))
{
// No content, no size
return Size.Empty;
}
//DiagnosticWriteLine("MeasureOverride < " + availableSize);
Size measureSize;
if (_childActualSize == Size.Empty)
{
// Determine the largest size after the transformation
measureSize = ComputeLargestTransformedSize(availableSize);
}
else
{
// Previous measure/arrange pass determined that Child.DesiredSize was larger than believed
//DiagnosticWriteLine(" Using _childActualSize");
measureSize = _childActualSize;
}
// Perform a mesaure on the _transformRoot (containing Child)
//DiagnosticWriteLine(" _transformRoot.Measure < " + measureSize);
_transformRoot.Measure(measureSize);
//DiagnosticWriteLine(" _transformRoot.DesiredSize = " + _transformRoot.DesiredSize);
// WPF equivalent of _childActualSize technique (much simpler, but doesn't work on Silverlight 2)
// // If the child is going to render larger than the available size, re-measure according to that size
// child.Arrange(new Rect());
// if (child.RenderSize != child.DesiredSize)
// {
// _transformRoot.Measure(child.RenderSize);
// }
// Transform DesiredSize to find its width/height
Rect transformedDesiredRect = RectTransform(new Rect(0, 0, _transformRoot.DesiredSize.Width, _transformRoot.DesiredSize.Height), _transformation);
Size transformedDesiredSize = new Size(transformedDesiredRect.Width, transformedDesiredRect.Height);
// Return result to allocate enough space for the transformation
//DiagnosticWriteLine("MeasureOverride > " + transformedDesiredSize);
return transformedDesiredSize;
}
/// <summary>
/// Provides the behavior for the "Arrange" pass of layout.
/// </summary>
/// <param name="finalSize">The final area within the parent that this element should use to arrange itself and its children.</param>
/// <returns>The actual size used.</returns>
/// <remarks>
/// Using the WPF paramater name finalSize instead of Silverlight's finalSize for clarity
/// </remarks>
protected override Size ArrangeOverride(Size finalSize)
{
FrameworkElement child = Child;
if ((null == _transformRoot) || (null == child))
{
// No child, use whatever was given
return finalSize;
}
//DiagnosticWriteLine("ArrangeOverride < " + finalSize);
// Determine the largest available size after the transformation
Size finalSizeTransformed = ComputeLargestTransformedSize(finalSize);
if (IsSizeSmaller(finalSizeTransformed, _transformRoot.DesiredSize))
{
// Some elements do not like being given less space than they asked for (ex: TextBlock)
// Bump the working size up to do the right thing by them
//DiagnosticWriteLine(" Replacing finalSizeTransformed with larger _transformRoot.DesiredSize");
finalSizeTransformed = _transformRoot.DesiredSize;
}
//DiagnosticWriteLine(" finalSizeTransformed = " + finalSizeTransformed);
// Transform the working size to find its width/height
Rect transformedRect = RectTransform(new Rect(0, 0, finalSizeTransformed.Width, finalSizeTransformed.Height), _transformation);
// Create the Arrange rect to center the transformed content
Rect finalRect = new Rect(
-transformedRect.Left + ((finalSize.Width - transformedRect.Width) / 2),
-transformedRect.Top + ((finalSize.Height - transformedRect.Height) / 2),
finalSizeTransformed.Width,
finalSizeTransformed.Height);
// Perform an Arrange on _transformRoot (containing Child)
//DiagnosticWriteLine(" _transformRoot.Arrange < " + finalRect);
_transformRoot.Arrange(finalRect);
//DiagnosticWriteLine(" Child.RenderSize = " + child.RenderSize);
// This is the first opportunity under Silverlight to find out the Child's true DesiredSize
if (IsSizeSmaller(finalSizeTransformed, child.RenderSize) && (Size.Empty == _childActualSize))
{
// Unfortunately, all the work so far is invalid because the wrong DesiredSize was used
//DiagnosticWriteLine(" finalSizeTransformed smaller than Child.RenderSize");
// Make a note of the actual DesiredSize
_childActualSize = new Size(child.ActualWidth, child.ActualHeight);
//DiagnosticWriteLine(" _childActualSize = " + _childActualSize);
// Force a new measure/arrange pass
InvalidateMeasure();
}
else
{
// Clear the "need to measure/arrange again" flag
_childActualSize = Size.Empty;
}
//DiagnosticWriteLine(" _transformRoot.RenderSize = " + _transformRoot.RenderSize);
// Return result to perform the transformation
//DiagnosticWriteLine("ArrangeOverride > " + finalSize);
return finalSize;
}
/// <summary>
/// Compute the largest usable size (greatest area) after applying the transformation to the specified bounds.
/// </summary>
/// <param name="arrangeBounds">Arrange bounds.</param>
/// <returns>Largest Size possible.</returns>
[SuppressMessage("Microsoft.Maintainability", "CA1502:AvoidExcessiveComplexity", Justification = "Closely corresponds to WPF's FrameworkElement.FindMaximalAreaLocalSpaceRect.")]
private Size ComputeLargestTransformedSize(Size arrangeBounds)
{
//DiagnosticWriteLine(" ComputeLargestTransformedSize < " + arrangeBounds);
// Computed largest transformed size
Size computedSize = Size.Empty;
// Detect infinite bounds and constrain the scenario
bool infiniteWidth = double.IsInfinity(arrangeBounds.Width);
if (infiniteWidth)
{
arrangeBounds.Width = arrangeBounds.Height;
}
bool infiniteHeight = double.IsInfinity(arrangeBounds.Height);
if (infiniteHeight)
{
arrangeBounds.Height = arrangeBounds.Width;
}
// Capture the matrix parameters
double a = _transformation.M11;
double b = _transformation.M12;
double c = _transformation.M21;
double d = _transformation.M22;
// Compute maximum possible transformed width/height based on starting width/height
// These constraints define two lines in the positive x/y quadrant
double maxWidthFromWidth = Math.Abs(arrangeBounds.Width / a);
double maxHeightFromWidth = Math.Abs(arrangeBounds.Width / c);
double maxWidthFromHeight = Math.Abs(arrangeBounds.Height / b);
double maxHeightFromHeight = Math.Abs(arrangeBounds.Height / d);
// The transformed width/height that maximize the area under each segment is its midpoint
// At most one of the two midpoints will satisfy both constraints
double idealWidthFromWidth = maxWidthFromWidth / 2;
double idealHeightFromWidth = maxHeightFromWidth / 2;
double idealWidthFromHeight = maxWidthFromHeight / 2;
double idealHeightFromHeight = maxHeightFromHeight / 2;
// Compute slope of both constraint lines
double slopeFromWidth = -(maxHeightFromWidth / maxWidthFromWidth);
double slopeFromHeight = -(maxHeightFromHeight / maxWidthFromHeight);
if ((0 == arrangeBounds.Width) || (0 == arrangeBounds.Height))
{
// Check for empty bounds
computedSize = new Size(arrangeBounds.Width, arrangeBounds.Height);
}
else if (infiniteWidth && infiniteHeight)
{
// Check for completely unbound scenario
computedSize = new Size(double.PositiveInfinity, double.PositiveInfinity);
}
else if (!MatrixHasInverse(_transformation))
{
// Check for singular matrix
computedSize = new Size(0, 0);
}
else if ((0 == b) || (0 == c))
{
// Check for 0/180 degree special cases
double maxHeight = (infiniteHeight ? double.PositiveInfinity : maxHeightFromHeight);
double maxWidth = (infiniteWidth ? double.PositiveInfinity : maxWidthFromWidth);
if ((0 == b) && (0 == c))
{
// No constraints
computedSize = new Size(maxWidth, maxHeight);
}
else if (0 == b)
{
// Constrained by width
double computedHeight = Math.Min(idealHeightFromWidth, maxHeight);
computedSize = new Size(
maxWidth - Math.Abs((c * computedHeight) / a),
computedHeight);
}
else if (0 == c)
{
// Constrained by height
double computedWidth = Math.Min(idealWidthFromHeight, maxWidth);
computedSize = new Size(
computedWidth,
maxHeight - Math.Abs((b * computedWidth) / d));
}
}
else if ((0 == a) || (0 == d))
{
// Check for 90/270 degree special cases
double maxWidth = (infiniteHeight ? double.PositiveInfinity : maxWidthFromHeight);
double maxHeight = (infiniteWidth ? double.PositiveInfinity : maxHeightFromWidth);
if ((0 == a) && (0 == d))
{
// No constraints
computedSize = new Size(maxWidth, maxHeight);
}
else if (0 == a)
{
// Constrained by width
double computedHeight = Math.Min(idealHeightFromHeight, maxHeight);
computedSize = new Size(
maxWidth - Math.Abs((d * computedHeight) / b),
computedHeight);
}
else if (0 == d)
{
// Constrained by height
double computedWidth = Math.Min(idealWidthFromWidth, maxWidth);
computedSize = new Size(
computedWidth,
maxHeight - Math.Abs((a * computedWidth) / c));
}
}
else if (idealHeightFromWidth <= ((slopeFromHeight * idealWidthFromWidth) + maxHeightFromHeight))
{
// Check the width midpoint for viability (by being below the height constraint line)
computedSize = new Size(idealWidthFromWidth, idealHeightFromWidth);
}
else if (idealHeightFromHeight <= ((slopeFromWidth * idealWidthFromHeight) + maxHeightFromWidth))
{
// Check the height midpoint for viability (by being below the width constraint line)
computedSize = new Size(idealWidthFromHeight, idealHeightFromHeight);
}
else
{
// Neither midpoint is viable; use the intersection of the two constraint lines instead
// Compute width by setting heights equal (m1*x+c1=m2*x+c2)
double computedWidth = (maxHeightFromHeight - maxHeightFromWidth) / (slopeFromWidth - slopeFromHeight);
// Compute height from width constraint line (y=m*x+c; using height would give same result)
computedSize = new Size(
computedWidth,
(slopeFromWidth * computedWidth) + maxHeightFromWidth);
}
// Return result
//DiagnosticWriteLine(" ComputeLargestTransformedSize > " + computedSize);
return computedSize;
}
/// <summary>
/// Returns true if Size a is smaller than Size b in either dimension.
/// </summary>
/// <param name="a">Second Size.</param>
/// <param name="b">First Size.</param>
/// <returns>True if Size a is smaller than Size b in either dimension.</returns>
private static bool IsSizeSmaller(Size a, Size b)
{
// WPF equivalent of following code:
// return ((a.Width < b.Width) || (a.Height < b.Height));
return ((a.Width + AcceptableDelta < b.Width) || (a.Height + AcceptableDelta < b.Height));
}
/// <summary>
/// Rounds the non-offset elements of a Matrix to avoid issues due to floating point imprecision.
/// </summary>
/// <param name="matrix">Matrix to round.</param>
/// <param name="decimals">Number of decimal places to round to.</param>
/// <returns>Rounded Matrix.</returns>
private static Matrix RoundMatrix(Matrix matrix, int decimals)
{
return new Matrix(
Math.Round(matrix.M11, decimals),
Math.Round(matrix.M12, decimals),
Math.Round(matrix.M21, decimals),
Math.Round(matrix.M22, decimals),
matrix.OffsetX,
matrix.OffsetY);
}
/// <summary>
/// Implements WPF's Rect.Transform on Silverlight.
/// </summary>
/// <param name="rect">Rect to transform.</param>
/// <param name="matrix">Matrix to transform with.</param>
/// <returns>Bounding box of transformed Rect.</returns>
private static Rect RectTransform(Rect rect, Matrix matrix)
{
// WPF equivalent of following code:
// Rect rectTransformed = Rect.Transform(rect, matrix);
Point leftTop = matrix.Transform(new Point(rect.Left, rect.Top));
Point rightTop = matrix.Transform(new Point(rect.Right, rect.Top));
Point leftBottom = matrix.Transform(new Point(rect.Left, rect.Bottom));
Point rightBottom = matrix.Transform(new Point(rect.Right, rect.Bottom));
double left = Math.Min(Math.Min(leftTop.X, rightTop.X), Math.Min(leftBottom.X, rightBottom.X));
double top = Math.Min(Math.Min(leftTop.Y, rightTop.Y), Math.Min(leftBottom.Y, rightBottom.Y));
double right = Math.Max(Math.Max(leftTop.X, rightTop.X), Math.Max(leftBottom.X, rightBottom.X));
double bottom = Math.Max(Math.Max(leftTop.Y, rightTop.Y), Math.Max(leftBottom.Y, rightBottom.Y));
Rect rectTransformed = new Rect(left, top, right - left, bottom - top);
return rectTransformed;
}
/// <summary>
/// Implements WPF's Matrix.Multiply on Silverlight.
/// </summary>
/// <param name="matrix1">First matrix.</param>
/// <param name="matrix2">Second matrix.</param>
/// <returns>Multiplication result.</returns>
private static Matrix MatrixMultiply(Matrix matrix1, Matrix matrix2)
{
// WPF equivalent of following code:
// return Matrix.Multiply(matrix1, matrix2);
return new Matrix(
(matrix1.M11 * matrix2.M11) + (matrix1.M12 * matrix2.M21),
(matrix1.M11 * matrix2.M12) + (matrix1.M12 * matrix2.M22),
(matrix1.M21 * matrix2.M11) + (matrix1.M22 * matrix2.M21),
(matrix1.M21 * matrix2.M12) + (matrix1.M22 * matrix2.M22),
((matrix1.OffsetX * matrix2.M11) + (matrix1.OffsetY * matrix2.M21)) + matrix2.OffsetX,
((matrix1.OffsetX * matrix2.M12) + (matrix1.OffsetY * matrix2.M22)) + matrix2.OffsetY);
}
/// <summary>
/// Implements WPF's Matrix.HasInverse on Silverlight.
/// </summary>
/// <param name="matrix">Matrix to check for inverse.</param>
/// <returns>True if the Matrix has an inverse.</returns>
private static bool MatrixHasInverse(Matrix matrix)
{
// WPF equivalent of following code:
// return matrix.HasInverse;
return (0 != ((matrix.M11 * matrix.M22) - (matrix.M12 * matrix.M21)));
}
}
}
In the App.xaml file
Add namespace common
xmlns:common="using:Common"
create a new style inside of ApplicationResources
<Application.Resources>
<Style TargetType="common:LayoutTransformer">
<Setter Property="Foreground" Value="#FF000000"/>
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="common:LayoutTransformer">
<Grid x:Name="TransformRoot" Background="{TemplateBinding Background}">
<ContentPresenter
x:Name="Presenter"
Content="{TemplateBinding Content}"
ContentTemplate="{TemplateBinding ContentTemplate}"/>
</Grid>
</ControlTemplate>
</Setter.Value>
</Setter>
</Style>
</Application.Resources>
Now to rotate a textblock anticlockwise by 90 degrees
Add namespace common
xmlns:common="using:Common"
And use this code
<common:LayoutTransformer>
<common:LayoutTransformer.LayoutTransform>
<RotateTransform Angle="-90" />
</common:LayoutTransformer.LayoutTransform>
<TextBlock Text="CATEGORIES"
FontSize="30"/>
</common:LayoutTransformer>
If you rotate the Border (the parent), TextBlock will be rotated as well since it is the child of the Border.
<Border Height="80"
Background="Teal">
<Border.RenderTransform>
<RotateTransform Angle="-90" />
</Border.RenderTransform>
<TextBlock Text="CATEGORIES"
Foreground="White"
FontFamily="Segoe UI Black"
FontSize="30">
</TextBlock>
</Border>
I'm struggling to figure out how to wrap my listview items horizontally and fill up available space within my listview.
So far, the items within my list view do not wrap.
XAML:
<Grid Grid.Row="4" Grid.RowSpacing="3" Grid.ColumnSpacing="3" BackgroundColor="Silver">
<ListView ItemsSource="{Binding EmployeeIds}" SelectedItem="{Binding SelectedEmployeeId}"
BackgroundColor="Black" >
<ListView.ItemTemplate>
<DataTemplate>
<ViewCell>
<ViewCell.View>
<customcontrols:WrapLayoutOld Orientation="Horizontal">
<Label Text="{Binding Value}" TextColor="Yellow" XAlign="Start" />
</customcontrols:WrapLayoutOld>
</ViewCell.View>
</ViewCell>
</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</Grid>
WrapLayout:
using System;
using System.Linq;
using System.Collections.Generic;
using Xamarin.Forms;
namespace Custom.Controls
{
/// <summary>
/// New WrapLayout
/// </summary>
/// <author>Jason Smith</author>
public class WrapLayout : Layout<View>
{
Dictionary<View, SizeRequest> layoutCache = new Dictionary<View, SizeRequest>();
/// <summary>
/// Backing Storage for the Spacing property
/// </summary>
public static readonly BindableProperty SpacingProperty =
BindableProperty.Create<WrapLayout, double>(w => w.Spacing, 5,
propertyChanged: (bindable, oldvalue, newvalue) => ((WrapLayout)bindable).layoutCache.Clear());
/// <summary>
/// Spacing added between elements (both directions)
/// </summary>
/// <value>The spacing.</value>
public double Spacing
{
get { return (double)GetValue(SpacingProperty); }
set { SetValue(SpacingProperty, value); }
}
public WrapLayout()
{
VerticalOptions = HorizontalOptions = LayoutOptions.FillAndExpand;
}
protected override void OnChildMeasureInvalidated()
{
base.OnChildMeasureInvalidated();
layoutCache.Clear();
}
protected override SizeRequest OnSizeRequest(double widthConstraint, double heightConstraint)
{
double lastX;
double lastY;
var layout = NaiveLayout(widthConstraint, heightConstraint, out lastX, out lastY);
return new SizeRequest(new Size(lastX, lastY));
}
protected override void LayoutChildren(double x, double y, double width, double height)
{
double lastX, lastY;
var layout = NaiveLayout(width, height, out lastX, out lastY);
foreach (var t in layout)
{
var offset = (int)((width - t.Last().Item2.Right) / 2);
foreach (var dingus in t)
{
var location = new Rectangle(dingus.Item2.X + x + offset, dingus.Item2.Y + y, dingus.Item2.Width, dingus.Item2.Height);
LayoutChildIntoBoundingRegion(dingus.Item1, location);
}
}
}
private List<List<Tuple<View, Rectangle>>> NaiveLayout(double width, double height, out double lastX, out double lastY)
{
double startX = 0;
double startY = 0;
double right = width;
double nextY = 0;
lastX = 0;
lastY = 0;
var result = new List<List<Tuple<View, Rectangle>>>();
var currentList = new List<Tuple<View, Rectangle>>();
foreach (var child in Children)
{
SizeRequest sizeRequest;
if (!layoutCache.TryGetValue(child, out sizeRequest))
{
layoutCache[child] = sizeRequest = child.GetSizeRequest(double.PositiveInfinity, double.PositiveInfinity);
}
var paddedWidth = sizeRequest.Request.Width + Spacing;
var paddedHeight = sizeRequest.Request.Height + Spacing;
if (startX + paddedWidth > right)
{
startX = 0;
startY += nextY;
if (currentList.Count > 0)
{
result.Add(currentList);
currentList = new List<Tuple<View, Rectangle>>();
}
}
currentList.Add(new Tuple<View, Rectangle>(child, new Rectangle(startX, startY, sizeRequest.Request.Width, sizeRequest.Request.Height)));
lastX = Math.Max(lastX, startX + paddedWidth);
lastY = Math.Max(lastY, startY + paddedHeight);
nextY = Math.Max(nextY, paddedHeight);
startX += paddedWidth;
}
result.Add(currentList);
return result;
}
}
/// <summary>
/// Simple Layout panel which performs wrapping on the boundaries.
/// </summary>
public class WrapLayoutOld : Layout<View>
{
/// <summary>
/// Backing Storage for the Orientation property
/// </summary>
public static readonly BindableProperty OrientationProperty =
BindableProperty.Create<WrapLayoutOld, StackOrientation>(w => w.Orientation, StackOrientation.Vertical,
propertyChanged: (bindable, oldvalue, newvalue) => ((WrapLayoutOld)bindable).OnSizeChanged());
/// <summary>
/// Orientation (Horizontal or Vertical)
/// </summary>
public StackOrientation Orientation
{
get { return (StackOrientation)GetValue(OrientationProperty); }
set { SetValue(OrientationProperty, value); }
}
/// <summary>
/// Backing Storage for the Spacing property
/// </summary>
public static readonly BindableProperty SpacingProperty =
BindableProperty.Create<WrapLayoutOld, double>(w => w.Spacing, 6,
propertyChanged: (bindable, oldvalue, newvalue) => ((WrapLayoutOld)bindable).OnSizeChanged());
/// <summary>
/// Spacing added between elements (both directions)
/// </summary>
/// <value>The spacing.</value>
public double Spacing
{
get { return (double)GetValue(SpacingProperty); }
set { SetValue(SpacingProperty, value); }
}
/// <summary>
/// This is called when the spacing or orientation properties are changed - it forces
/// the control to go back through a layout pass.
/// </summary>
private void OnSizeChanged()
{
this.ForceLayout();
}
//http://forums.xamarin.com/discussion/17961/stacklayout-with-horizontal-orientation-how-to-wrap-vertically#latest
// protected override void OnPropertyChanged
// (string propertyName = null)
// {
// base.OnPropertyChanged(propertyName);
// if ((propertyName == WrapLayout.OrientationProperty.PropertyName) ||
// (propertyName == WrapLayout.SpacingProperty.PropertyName)) {
// this.OnSizeChanged();
// }
// }
/// <summary>
/// This method is called during the measure pass of a layout cycle to get the desired size of an element.
/// </summary>
/// <param name="widthConstraint">The available width for the element to use.</param>
/// <param name="heightConstraint">The available height for the element to use.</param>
protected override SizeRequest OnSizeRequest(double widthConstraint, double heightConstraint)
{
if (WidthRequest > 0)
widthConstraint = Math.Min(widthConstraint, WidthRequest);
if (HeightRequest > 0)
heightConstraint = Math.Min(heightConstraint, HeightRequest);
double internalWidth = double.IsPositiveInfinity(widthConstraint) ? double.PositiveInfinity : Math.Max(0, widthConstraint);
double internalHeight = double.IsPositiveInfinity(heightConstraint) ? double.PositiveInfinity : Math.Max(0, heightConstraint);
return Orientation == StackOrientation.Vertical
? DoVerticalMeasure(internalWidth, internalHeight)
: DoHorizontalMeasure(internalWidth, internalHeight);
}
/// <summary>
/// Does the vertical measure.
/// </summary>
/// <returns>The vertical measure.</returns>
/// <param name="widthConstraint">Width constraint.</param>
/// <param name="heightConstraint">Height constraint.</param>
private SizeRequest DoVerticalMeasure(double widthConstraint, double heightConstraint)
{
int columnCount = 1;
double width = 0;
double height = 0;
double minWidth = 0;
double minHeight = 0;
double heightUsed = 0;
foreach (var item in Children)
{
var size = item.GetSizeRequest(widthConstraint, heightConstraint);
width = Math.Max(width, size.Request.Width);
var newHeight = height + size.Request.Height + Spacing;
if (newHeight > heightConstraint)
{
columnCount++;
heightUsed = Math.Max(height, heightUsed);
height = size.Request.Height;
}
else
height = newHeight;
minHeight = Math.Max(minHeight, size.Minimum.Height);
minWidth = Math.Max(minWidth, size.Minimum.Width);
}
if (columnCount > 1)
{
height = Math.Max(height, heightUsed);
width *= columnCount; // take max width
}
return new SizeRequest(new Size(width, height), new Size(minWidth, minHeight));
}
/// <summary>
/// Does the horizontal measure.
/// </summary>
/// <returns>The horizontal measure.</returns>
/// <param name="widthConstraint">Width constraint.</param>
/// <param name="heightConstraint">Height constraint.</param>
private SizeRequest DoHorizontalMeasure(double widthConstraint, double heightConstraint)
{
int rowCount = 1;
double width = 0;
double height = 0;
double minWidth = 0;
double minHeight = 0;
double widthUsed = 0;
foreach (var item in Children)
{
var size = item.GetSizeRequest(widthConstraint, heightConstraint);
height = Math.Max(height, size.Request.Height);
var newWidth = width + size.Request.Width + Spacing;
if (newWidth > widthConstraint)
{
rowCount++;
widthUsed = Math.Max(width, widthUsed);
width = size.Request.Width;
}
else
width = newWidth;
minHeight = Math.Max(minHeight, size.Minimum.Height);
minWidth = Math.Max(minWidth, size.Minimum.Width);
}
if (rowCount > 1)
{
width = Math.Max(width, widthUsed);
height = (height + Spacing) * rowCount - Spacing; // via MitchMilam
}
return new SizeRequest(new Size(width, height), new Size(minWidth, minHeight));
}
/// <summary>
/// Positions and sizes the children of a Layout.
/// </summary>
/// <param name="x">A value representing the x coordinate of the child region bounding box.</param>
/// <param name="y">A value representing the y coordinate of the child region bounding box.</param>
/// <param name="width">A value representing the width of the child region bounding box.</param>
/// <param name="height">A value representing the height of the child region bounding box.</param>
protected override void LayoutChildren(double x, double y, double width, double height)
{
if (Orientation == StackOrientation.Vertical)
{
double colWidth = 0;
double yPos = y, xPos = x;
foreach (var child in Children.Where(c => c.IsVisible))
{
var request = child.GetSizeRequest(width, height);
double childWidth = request.Request.Width;
double childHeight = request.Request.Height;
colWidth = Math.Max(colWidth, childWidth);
if (yPos + childHeight > height)
{
yPos = y;
xPos += colWidth + Spacing;
colWidth = 0;
}
var region = new Rectangle(xPos, yPos, childWidth, childHeight);
LayoutChildIntoBoundingRegion(child, region);
yPos += region.Height + Spacing;
}
}
else {
double rowHeight = 0;
double yPos = y, xPos = x;
foreach (var child in Children.Where(c => c.IsVisible))
{
var request = child.GetSizeRequest(width, height);
double childWidth = request.Request.Width;
double childHeight = request.Request.Height;
rowHeight = Math.Max(rowHeight, childHeight);
if (xPos + childWidth > width)
{
xPos = x;
yPos += rowHeight + Spacing;
rowHeight = 0;
}
var region = new Rectangle(xPos, yPos, childWidth, childHeight);
LayoutChildIntoBoundingRegion(child, region);
xPos += region.Width + Spacing;
}
}
}
}
}
FlexLayout has been introduced in Xamarin.Forms 3.0, so if you can upgrade you should definitely use it:
FlexLayout is similar to the Xamarin.Forms StackLayout in that it can
arrange its children horizontally and vertically in a stack. However,
the FlexLayout is also capable of wrapping its children if there are
too many to fit in a single row or column, and also has many options
for orientation, alignment, and adapting to various screen sizes.
Official docs.
I have this list of images and they wrap correctly using the same class you are using, it may be related to LayoutOptions:
WrapLayout container = new WrapLayout
{
VerticalOptions = LayoutOptions.FillAndExpand,
HorizontalOptions = LayoutOptions.StartAndExpand,
Orientation = StackOrientation.Horizontal,
Padding = 10,
Spacing = 10
};
Image thumbnail = new Image
{
HeightRequest = 80,
WidthRequest = 80,
HorizontalOptions = LayoutOptions.Start,
VerticalOptions = LayoutOptions.Start,
//BackgroundColor = Color.Black
Source = item.ImageText,
Aspect = Aspect.AspectFit
};
On certain images, when I call:
PdfImageObject pimg = new PdfImageObject(stream);
Image bmp = pimg.GetDrawingImage();
The Image that is returned is twisted. I've seen this before and it usually has to do with byte alignment but I'm not sure how to get around this.
The /DecodeParms for this object are /EndOfLine true /K 0 /Columns 3300.
I have tried using the GetStreamBytesRaw() with BitMiracle.LibTiff and with it I can get the data formatted properly although the image is rotated. I'd prefer for GetDrawingImage() to decode the data properly if possible, assuming that is the problem.
I could provide the PDF via email if requested.
Thanks,
Darren
For anyone else that runs across this scenario here is my solution. The key to this puzzle was understanding that /K 0 is G3, /K -1 (or anything less than 0) is G4 /K 1 (or anything greater than 0) is G3-2D.
The twisting happens when you try to make G3 compressed data fit into a G4 image which it appears that is what iTextSharp may be doing. I know it definitely does not work with how I have iTextSharp implemented in my project. I confess that I cannot decipher all the decoding stuff that iTextSharp is doing so it could be something I'm missing too.
EndOfLine didn't have any part in this puzzle but I still think putting line feeds in binary data is a strange practice.
99% of this code came from BitMiracle.LibTiff.Net - Thank you.
int nK = 0;// Default to 0 like the PDF Spec
PdfObject oDecodeParms = stream.Get(PdfName.DECODEPARMS);
if (oDecodeParms is PdfDictionary)
{
PdfObject oK0 = ((PdfDictionary)oDecodeParms).Get(PdfName.K);
if (oK0 != null)
nK = ((PdfNumber)oK0).IntValue;
}
using (MemoryStream ms = new MemoryStream())
{
using (Tiff tiff = Tiff.ClientOpen("custom", "w", ms, new TiffStream()))
{
tiff.SetField(TiffTag.IMAGEWIDTH, width);
tiff.SetField(TiffTag.IMAGELENGTH, height);
if (nK == 0 || nK > 0) // 0 = Group 3, > 0 = Group 3 2D
tiff.SetField(TiffTag.COMPRESSION, Compression.CCITTFAX3);
else if (nK < 0) // < 0 = Group 4
tiff.SetField(TiffTag.COMPRESSION, Compression.CCITTFAX4);
tiff.SetField(TiffTag.BITSPERSAMPLE, bpc);
tiff.SetField(TiffTag.SAMPLESPERPIXEL, 1);
tiff.WriteRawStrip(0, rawBytes, rawBytes.Length); //saving the tiff file using the raw bytes retrieved from the PDF.
tiff.Close();
}
TiffStreamForBytes byteStream = new TiffStreamForBytes(ms.ToArray());
using (Tiff input = Tiff.ClientOpen("bytes", "r", null, byteStream))
{
int stride = input.ScanlineSize();
Bitmap result = new Bitmap(width, height, pixelFormat);
ColorPalette palette = result.Palette;
palette.Entries[0] = System.Drawing.Color.White;
palette.Entries[1] = System.Drawing.Color.Black;
result.Palette = palette;
for (int i = 0; i < height; i++)
{
Rectangle imgRect = new Rectangle(0, i, width, 1);
BitmapData imgData = result.LockBits(imgRect, ImageLockMode.WriteOnly, pixelFormat);
byte[] buffer = new byte[stride];
input.ReadScanline(buffer, i);
System.Runtime.InteropServices.Marshal.Copy(buffer, 0, imgData.Scan0, buffer.Length);
result.UnlockBits(imgData);
}
}
}
/// <summary>
/// Custom read-only stream for byte buffer that can be used
/// with Tiff.ClientOpen method.
/// </summary>
public class TiffStreamForBytes : TiffStream
{
private byte[] m_bytes;
private int m_position;
public TiffStreamForBytes(byte[] bytes)
{
m_bytes = bytes;
m_position = 0;
}
public override int Read(object clientData, byte[] buffer, int offset, int count)
{
if ((m_position + count) > m_bytes.Length)
return -1;
Buffer.BlockCopy(m_bytes, m_position, buffer, offset, count);
m_position += count;
return count;
}
public override void Write(object clientData, byte[] buffer, int offset, int count)
{
throw new InvalidOperationException("This stream is read-only");
}
public override long Seek(object clientData, long offset, SeekOrigin origin)
{
switch (origin)
{
case SeekOrigin.Begin:
if (offset > m_bytes.Length)
return -1;
m_position = (int)offset;
return m_position;
case SeekOrigin.Current:
if ((offset + m_position) > m_bytes.Length)
return -1;
m_position += (int)offset;
return m_position;
case SeekOrigin.End:
if ((m_bytes.Length - offset) < 0)
return -1;
m_position = (int)(m_bytes.Length - offset);
return m_position;
}
return -1;
}
public override void Close(object clientData)
{
// nothing to do
return;
}
public override long Size(object clientData)
{
return m_bytes.Length;
}
}
I need an algorithm that would take n rectangles of any sizes, and calculate a rectangle big enough to fit them all, minimizing its area so the wasted area is minimum, and also returning the position of all the smaller rectangles within.
The specific task I need this to implement on is in a sprite sheet compiler that would take individual PNG files and make a large PNG with all the images in it, so individual frames can be blitted from this surface at run time.
A nice to have feature would be that it aims to a specific given width/height ratio, but it's not mandatory.
I'd prefer simple, generic code I can port to another language.
This is what I put together for my own needs. The T parameter is whatever object you want associated with the results (think of it like the Tag property). It takes a list of sizes and returns a list of Rects that are arranged
static class LayoutHelper
{
/// <summary>
/// Determines the best fit of a List of Sizes, into the desired rectangle shape
/// </summary>
/// <typeparam name="T">Holder for an associated object (e.g., window, UserControl, etc.)</typeparam>
/// <param name="desiredWidthToHeightRatio">the target rectangle shape</param>
/// <param name="rectsToArrange">List of sizes that have to fit in the rectangle</param>
/// <param name="lossiness">1 = non-lossy (slow). Greater numbers improve speed, but miss some best fits</param>
/// <returns>list of arranged rects</returns>
static public List<Tuple<T, Rect>> BestFitRects<T>(double desiredWidthToHeightRatio,
List<Tuple<Size, T>> rectsToArrange, int lossiness = 10)
{
// helper anonymous function that tests for rectangle intersections or boundary violations
var CheckIfRectsIntersect = new Func<Rect, List<Rect>, double, bool>((one, list, containerHeight) =>
{
if (one.Y + one.Height > containerHeight) return true;
return list.Any(two =>
{
if ((one.Top > two.Bottom) ||
(one.Bottom < two.Top) ||
(one.Left > two.Right) ||
(one.Right < two.Left)) return false; // no intersection
return true; // intersection found
});
});
// helper anonymous function for adding drop points
var AddNewPotentialDropPoints = new Action<SortedDictionary<Point, object>, Rect>(
(potentialDropPoints, newRect) =>
{
// Only two locations make sense for placing a new rectangle, underneath the
// bottom left corner or to the right of a top right corner
potentialDropPoints[new Point(newRect.X + newRect.Width + 1,
newRect.Y)] = null;
potentialDropPoints[new Point(newRect.X,
newRect.Y + newRect.Height + 1)] = null;
});
var sync = new object();
// the outer boundary that limits how high the rectangles can stack vertically
var containingRectHeight = Convert.ToInt32(rectsToArrange.Max(a => a.Item1.Height));
// always try packing using the tallest rectangle first, working down in height
var largestToSmallest = rectsToArrange.OrderByDescending(a => a.Item1.Height).ToList();
// find the maximum possible container height needed
var totalHeight = Convert.ToInt32(rectsToArrange.Sum(a => a.Item1.Height));
List<Tuple<T, Rect>> bestResults = null;
// used to find the best packing arrangement that approximates the target container dimensions ratio
var bestResultsProximityToDesiredRatio = double.MaxValue;
// try all arrangements for all suitable container sizes
Parallel.For(0, ((totalHeight + 1) - containingRectHeight) / lossiness,
//new ParallelOptions() { MaxDegreeOfParallelism = 1},
currentHeight =>
{
var potentialDropPoints = new SortedDictionary<Point, object>(Comparer<Point>.Create((p1, p2) =>
{
// choose the leftmost, then highest point as earlier in the sort order
if (p1.X != p2.X) return p1.X.CompareTo(p2.X);
return p1.Y.CompareTo(p2.Y);
}));
var localResults = new List<Tuple<T, Rect>>();
// iterate through the rectangles from largest to smallest
largestToSmallest.ForEach(currentSize =>
{
// check to see if the next rectangle fits in with the currently arranged rectangles
if (!potentialDropPoints.Any(dropPoint =>
{
var workingPoint = dropPoint.Key;
Rect? lastFittingRect = null;
var lowY = workingPoint.Y;
var highY = workingPoint.Y - 1;
var boundaryFound = false;
// check if it fits in the current arrangement of rects
do
{
// create a positioned rectangle out of the size dimensions
var workingRect = new Rect(workingPoint,
new Point(workingPoint.X + currentSize.Item1.Width,
workingPoint.Y + currentSize.Item1.Height));
// keep moving it up in binary search fashion until it bumps the higher rect
if (!CheckIfRectsIntersect(workingRect, localResults.Select(a => a.Item2).ToList(),
containingRectHeight + (currentHeight * lossiness)))
{
lastFittingRect = workingRect;
if (!boundaryFound)
{
highY = Math.Max(lowY - ((lowY - highY) * 2), 0);
if (highY == 0) boundaryFound = true;
}
else
{
lowY = workingPoint.Y;
}
}
else
{
boundaryFound = true;
highY = workingPoint.Y;
}
workingPoint = new Point(workingPoint.X, lowY - (lowY - highY) / 2);
} while (lowY - highY > 1);
if (lastFittingRect.HasValue) // found the sweet spot for this rect
{
var newRect = lastFittingRect.Value;
potentialDropPoints.Remove(dropPoint.Key);
// successfully found the best location for the new rectangle, so add it to the pending results
localResults.Add(Tuple.Create(currentSize.Item2, newRect));
AddNewPotentialDropPoints(potentialDropPoints, newRect);
return true;
}
return false;
}))
{
// this only occurs on the first square
var newRect = new Rect(0, 0, currentSize.Item1.Width, currentSize.Item1.Height);
localResults.Add(Tuple.Create(currentSize.Item2, newRect));
AddNewPotentialDropPoints(potentialDropPoints, newRect);
}
});
// layout is complete, now see if this layout is the best one found so far
var layoutHeight = localResults.Max(a => a.Item2.Y + a.Item2.Height);
var layoutWidth = localResults.Max(a => a.Item2.X + a.Item2.Width);
var widthMatchingDesiredRatio = desiredWidthToHeightRatio * layoutHeight;
double ratioProximity;
if (layoutWidth < widthMatchingDesiredRatio)
ratioProximity = widthMatchingDesiredRatio / layoutWidth;
else
ratioProximity = layoutWidth / widthMatchingDesiredRatio;
lock (sync)
{
if (ratioProximity < bestResultsProximityToDesiredRatio)
{
// this layout is the best approximation of the desired container dimensions, so far
bestResults = localResults;
bestResultsProximityToDesiredRatio = ratioProximity;
}
}
});
return bestResults ?? new List<Tuple<T, Rect>>() {Tuple.Create(rectsToArrange[0].Item2,
new Rect(new Point(0, 0), new Point(rectsToArrange[0].Item1.Width, rectsToArrange[0].Item1.Height))) };
}
}