I have a numpy-masked array, where some entries are masked. At some point in my code I want to apply some scaling to the array. I.e. all the values, including the masked ones, have to change according to the operation.
E.g.:
a = np.ma.array([1])
a.mask = True
a *= 10
a.mask = False
a
out [1]
I want the print result to be 10. But the change is ignored. Is there a simple way to do include the hidden values in the scaling?
The values are stored (or at least accessed via) the data property:
In [31]: a = np.ma.array([1, 2, 3], mask=[True, False, True])
In [32]: a
Out[32]:
masked_array(data=[--, 2, --],
mask=[ True, False, True],
fill_value=999999)
In [33]: a.data
Out[33]: array([1, 2, 3])
In [34]: a *= 10
In [35]: a
Out[35]:
masked_array(data=[--, 20, --],
mask=[ True, False, True],
fill_value=999999)
In [36]: a.data
Out[36]: array([ 1, 20, 3])
But it doesn't let use change data directly (though it does let us change mask):
In [37]: a.data *= 2
Traceback (most recent call last):
Input In [37] in <module>
a.data *= 2
AttributeError: can't set attribute
You could set the mask to False, apply the change, and then restore the mask to the original value. That may sound round about, but it's probably not any more complicated than what happens under the covers when you use ma functions.
I don't use masked arrays much, except to answer questions like this, so don't know its documentation well.
a*b for a masked array uses np.ma.multiply(a, b, *args, **kwargs). This is implemented as a instance of :
class _MaskedBinaryOperation(_MaskedUFunc):
"""
Define masked version of binary operations, where invalid
values are pre-masked.
The code's a bit complicated, but it appears to perform the calculation on the full data of the masked arrays, and then revert the masked values to those of a or b. So in the case of a*=10, it is intentionally not changing the masked elements.
Related
I've got a 3D tensor x (e.g 4x4x100). I want to obtain a subset of this by explicitly choosing elements across the last dimension. This would have been easy if I was choosing the same elements across last dimension (e.g. x[:,:,30:50] but I want to target different elements across that dimension using the 2D tensor indices which specifies the idx across third dimension. Is there an easy way to do this in numpy?
A simpler 2D example:
x = [[1,2,3,4,5,6],[10,20,30,40,50,60]]
indices = [1,3]
Let's say I want to grab two elements across third dimension of x starting from points specified by indices. So my desired output is:
[[2,3],[40,50]]
Update: I think I could use a combination of take() and ravel_multi_index() but some of the platforms that are inspired by numpy (like PyTorch) don't seem to have ravel_multi_index so I'm looking for alternative solutions
Iterating over the idx, and collecting the slices is not a bad option if the number of 'rows' isn't too large (and the size of the sizes is relatively big).
In [55]: x = np.array([[1,2,3,4,5,6],[10,20,30,40,50,60]])
In [56]: idx = [1,3]
In [57]: np.array([x[j,i:i+2] for j,i in enumerate(idx)])
Out[57]:
array([[ 2, 3],
[40, 50]])
Joining the slices like this only works if they all are the same size.
An alternative is to collect the indices into an array, and do one indexing.
For example with a similar iteration:
idxs = np.array([np.arange(i,i+2) for i in idx])
But broadcasted addition may be better:
In [58]: idxs = np.array(idx)[:,None]+np.arange(2)
In [59]: idxs
Out[59]:
array([[1, 2],
[3, 4]])
In [60]: x[np.arange(2)[:,None], idxs]
Out[60]:
array([[ 2, 3],
[40, 50]])
ravel_multi_index is not hard to replicate (if you don't need clipping etc):
In [65]: np.ravel_multi_index((np.arange(2)[:,None],idxs),x.shape)
Out[65]:
array([[ 1, 2],
[ 9, 10]])
In [66]: x.flat[_]
Out[66]:
array([[ 2, 3],
[40, 50]])
In [67]: np.arange(2)[:,None]*x.shape[1]+idxs
Out[67]:
array([[ 1, 2],
[ 9, 10]])
along the 3D axis:
x = [x[:,i].narrow(2,index,2) for i,index in enumerate(indices)]
x = torch.stack(x,dim=1)
by enumerating you get the index of the axis and index from where you want to start slicing in one.
narrow gives you a zero-copy length long slice from a starting index start along a certain axis
you said you wanted:
dim = 2
start = index
length = 2
then you simply have to stack these tensors back to a single 3D.
This is the least work intensive thing i can think of for pytorch.
EDIT
if you just want different indices along different axis and indices is a 2D tensor you can do:
x = [x[:,i,index] for i,index in enumerate(indices)]
x = torch.stack(x,dim=1)
You really should have given a proper working example, making it unnecessarily confusing.
Here is how to do it in numpy, now clue about torch, though.
The following picks a slice of length n along the third dimension starting from points idx depending on the other two dimensions:
# example
a = np.arange(60).reshape(2, 3, 10)
idx = [(1,2,3),(4,3,2)]
n = 4
# build auxiliary 4D array where the last two dimensions represent
# a sliding n-window of the original last dimension
j,k,l = a.shape
s,t,u = a.strides
aux = np.lib.stride_tricks.as_strided(a, (j,k,l-n+1,n), (s,t,u,u))
# pick desired offsets from sliding windows
aux[(*np.ogrid[:j, :k], idx)]
# array([[[ 1, 2, 3, 4],
# [12, 13, 14, 15],
# [23, 24, 25, 26]],
# [[34, 35, 36, 37],
# [43, 44, 45, 46],
# [52, 53, 54, 55]]])
I came up with below using broadcasting:
x = np.array([[1,2,3,4,5,6,7,8,9,10],[10,20,30,40,50,60,70,80,90,100]])
i = np.array([1,5])
N = 2 # number of elements I want to extract along each dimension. Starting points specified in i
r = np.arange(x.shape[-1])
r = np.broadcast_to(r, x.shape)
ii = i[:, np.newaxis]
ii = np.broadcast_to(ii, x.shape)
mask = np.logical_and(r-ii>=0, r-ii<=N)
output = x[mask].reshape(2,3)
Does this look alright?
I have a calculated matrix
from numpy import matrix
vec=matrix([[ 4.79263398e-01+0.j , -2.94883960e-14+0.34362808j,
5.91036823e-01+0.j , -2.06730654e-14+0.41959935j,
-3.20298698e-01+0.08635809j, -5.97136351e-02+0.22325523j],
[ 9.45394208e-14+0.34385164j, 4.78941900e-01+0.j ,
1.07732017e-13+0.41891016j, 5.91969770e-01+0.j ,
-6.06877417e-02-0.2250884j , 3.17803028e-01+0.08500215j],
[ 4.63795513e-01-0.00827114j, -1.15263719e-02+0.33287485j,
-2.78282097e-01-0.20137267j, -2.81970922e-01-0.1980647j ,
9.26109539e-02-0.38428445j, 5.12483437e-01+0.j ],
[ -1.15282610e-02+0.33275927j, 4.63961516e-01-0.00826978j,
-2.84077490e-01-0.19723838j, -2.79429184e-01-0.19984041j,
-4.42104809e-01+0.25708681j, -2.71973825e-01+0.28735795j],
[ 4.63795513e-01+0.00827114j, 1.15263719e-02+0.33287485j,
-2.78282097e-01+0.20137267j, 2.81970922e-01-0.1980647j ,
2.73235786e-01+0.28564581j, -4.44053596e-01-0.25584307j],
[ 1.15282610e-02+0.33275927j, 4.63961516e-01+0.00826978j,
2.84077490e-01-0.19723838j, -2.79429184e-01+0.19984041j,
5.11419878e-01+0.j , -9.22028113e-02-0.38476356j]])
I want to get 2nd row, 3rd column element
vec[1][2]
IndexError: index 1 is out of bounds for axis 0 with size 1
and slicing works well
vec[1,2]
(1.07732017e-13+0.41891015999999998j)
My first question why first way does not work in this case? it worked before when I used it.
Second question is: the result of slicing is an array, how to make it an complex value without bracket? My experience was using
vec[1,2][0]
but again it is not working here.
I tried to do everything on numpy array at begining, those methods that do not work on numpy matrix work on numpy array. Why there are such differences?
The key difference is that a matrix is always 2d, always. (This is supposed to be familiar to MATLAB users.)
In [85]: mat = np.matrix('1,2;3,4')
In [86]: mat
Out[86]:
matrix([[1, 2],
[3, 4]])
In [87]: mat.shape
Out[87]: (2, 2)
In [88]: mat[1]
Out[88]: matrix([[3, 4]])
In [89]: _.shape
Out[89]: (1, 2)
Selecting a row of mat returns a matrix - a 1 row one. It should be clear that it cannot be indexed again with [1].
Indexing with the tuple returns a scalar:
In [90]: mat[1,1]
Out[90]: 4
In [91]: type(_)
Out[91]: numpy.int32
As a general rule operations on a np.matrix returns a matrix or a scalar, not a np.ndarray.
The other key point is that mat[1][1] is not one numpy operation. It is two, a mat[1] followed by another [1]. Imagine yourself to be a Python interpreter without any special knowledge of numpy. How would you evaluate that expression?
Now for the complex question:
In [92]: mat = np.matrix('1+3j, 2;-2, 2+1j')
In [93]: mat
Out[93]:
matrix([[ 1.+3.j, 2.+0.j],
[-2.+0.j, 2.+1.j]])
In [94]: mat[1,1]
Out[94]: (2+1j)
In [95]: type(_)
Out[95]: numpy.complex128
As expected the tuple index has returned a scalar numpy element. () is just part of numpys way of displaying a complex number.
We can use item to extra python equivalent, but the display still uses ()
In [96]: __.item()
Out[96]: (2+1j)
In [97]: type(_)
Out[97]: complex
In [98]: 1+3j
Out[98]: (1+3j)
mat has A property that gives the array equivalent. But notice the shapes.
In [99]: mat.A # a 2d array
Out[99]:
array([[ 1.+3.j, 2.+0.j],
[-2.+0.j, 2.+1.j]])
In [100]: mat.A1 # a 1d array
Out[100]: array([ 1.+3.j, 2.+0.j, -2.+0.j, 2.+1.j])
In [101]: mat[1].A
Out[101]: array([[-2.+0.j, 2.+1.j]])
In [102]: mat[1].A1
Out[102]: array([-2.+0.j, 2.+1.j])
Sometimes this behavior of matrix is handy. For example np.sum acts like the array keepdims=True:
In [108]: np.sum(mat,1)
Out[108]:
matrix([[ 3.+3.j],
[ 0.+1.j]])
In [110]: np.sum(mat.A,1, keepdims=True)
Out[110]:
array([[ 3.+3.j],
[ 0.+1.j]])
I need to compare a bunch of numpy arrays with different dimensions, say:
a = np.array([1,2,3])
b = np.array([1,2,3],[4,5,6])
assert(a == b[0])
How can I do this if I do not know either the shape of a and b, besides that
len(shape(a)) == len(shape(b)) - 1
and neither do I know which dimension to skip from b. I'd like to use np.index_exp, but that does not seem to help me ...
def compare_arrays(a,b,skip_row):
u = np.index_exp[ ... ]
assert(a[:] == b[u])
Edit
Or to put it otherwise, I wan't to construct slicing if I know the shape of the array and the dimension I want to miss. How do I dynamically create the np.index_exp, if I know the number of dimensions and positions, where to put ":" and where to put "0".
I was just looking at the code for apply_along_axis and apply_over_axis, studying how they construct indexing objects.
Lets make a 4d array:
In [355]: b=np.ones((2,3,4,3),int)
Make a list of slices (using list * replicate)
In [356]: ind=[slice(None)]*b.ndim
In [357]: b[ind].shape # same as b[:,:,:,:]
Out[357]: (2, 3, 4, 3)
In [358]: ind[2]=2 # replace one slice with index
In [359]: b[ind].shape # a slice, indexing on the third dim
Out[359]: (2, 3, 3)
Or with your example
In [361]: b = np.array([1,2,3],[4,5,6]) # missing []
...
TypeError: data type not understood
In [362]: b = np.array([[1,2,3],[4,5,6]])
In [366]: ind=[slice(None)]*b.ndim
In [367]: ind[0]=0
In [368]: a==b[ind]
Out[368]: array([ True, True, True], dtype=bool)
This indexing is basically the same as np.take, but the same idea can be extended to other cases.
I don't quite follow your questions about the use of :. Note that when building an indexing list I use slice(None). The interpreter translates all indexing : into slice objects: [start:stop:step] => slice(start, stop, step).
Usually you don't need to use a[:]==b[0]; a==b[0] is sufficient. With lists alist[:] makes a copy, with arrays it does nothing (unless used on the RHS, a[:]=...).
Suppose I want to create an array b which is a version of array a with the i'th row set to zero.
Currently, I have to do:
b = a.copy()
b[i, :] = 0
Which is a bit annoying, because you can't do that in lambdas, and everything else in numpy is functional. I'd like a function similar to theano's set_subtensor, where you could go
b = a.set_subtensor((i, slice(None)), 0)
or
b = np.set_subtensor(a, (i, slice(None)), 0)
As far as I can tell, there's nothing like that in numpy. Or is there?
Edit
The answer appears to be no, there is no such function, you need to define one yourself. See hpaulj's response.
Do you mean a simple function like this:
def subtensor(a, ind, val):
b=a.copy()
b[ind] = val
return b
In [192]: a=np.arange(12).reshape(3,4)
In [194]: subtensor(a,(1,slice(None)),0)
Out[194]:
array([[ 0, 1, 2, 3],
[ 0, 0, 0, 0],
[ 8, 9, 10, 11]])
Indexing takes a tuple like (1, slice(None)).
There are some alternative assignment functions like put, place, copyto, but none look like do this task.
These are equivalent:
b[0,:] = 1
b.__setitem__((0,slice(None)),1)
That is, the Python interpreter converts [] syntax into a method call.
This is an in-place operation. I don't know of anything that first makes a copy.
Functions like choose and where return copies, but they (normally) work with boolean masks, not indexing tuples.
I am looking for a fast formulation to do a numerical binning of a 2D numpy array. By binning I mean calculate submatrix averages or cumulative values. For ex. x = numpy.arange(16).reshape(4, 4) would have been splitted in 4 submatrix of 2x2 each and gives numpy.array([[2.5,4.5],[10.5,12.5]]) where 2.5=numpy.average([0,1,4,5]) etc...
How to perform such an operation in an efficient way... I don't have really any ideay how to perform this ...
Many thanks...
You can use a higher dimensional view of your array and take the average along the extra dimensions:
In [12]: a = np.arange(36).reshape(6, 6)
In [13]: a
Out[13]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])
In [14]: a_view = a.reshape(3, 2, 3, 2)
In [15]: a_view.mean(axis=3).mean(axis=1)
Out[15]:
array([[ 3.5, 5.5, 7.5],
[ 15.5, 17.5, 19.5],
[ 27.5, 29.5, 31.5]])
In general, if you want bins of shape (a, b) for an array of (rows, cols), your reshaping of it should be .reshape(rows // a, a, cols // b, b). Note also that the order of the .mean is important, e.g. a_view.mean(axis=1).mean(axis=3) will raise an error, because a_view.mean(axis=1) only has three dimensions, although a_view.mean(axis=1).mean(axis=2) will work fine, but it makes it harder to understand what is going on.
As is, the above code only works if you can fit an integer number of bins inside your array, i.e. if a divides rows and b divides cols. There are ways to deal with other cases, but you will have to define the behavior you want then.
See the SciPy Cookbook on rebinning, which provides this snippet:
def rebin(a, *args):
'''rebin ndarray data into a smaller ndarray of the same rank whose dimensions
are factors of the original dimensions. eg. An array with 6 columns and 4 rows
can be reduced to have 6,3,2 or 1 columns and 4,2 or 1 rows.
example usages:
>>> a=rand(6,4); b=rebin(a,3,2)
>>> a=rand(6); b=rebin(a,2)
'''
shape = a.shape
lenShape = len(shape)
factor = asarray(shape)/asarray(args)
evList = ['a.reshape('] + \
['args[%d],factor[%d],'%(i,i) for i in range(lenShape)] + \
[')'] + ['.sum(%d)'%(i+1) for i in range(lenShape)] + \
['/factor[%d]'%i for i in range(lenShape)]
print ''.join(evList)
return eval(''.join(evList))
I assume that you only want to know how to generally build a function that performs well and does something with arrays, just like numpy.reshape in your example. So if performance really matters and you're already using numpy, you can write your own C code for that, like numpy does. For example, the implementation of arange is completely in C. Almost everything with numpy which matters in terms of performance is implemented in C.
However, before doing so you should try to implement the code in python and see if the performance is good enough. Try do make the python code as efficient as possible. If it still doesn't suit your performance needs, go the C way.
You may read about that in the docs.