How to add/reflect query changes to the existing data in spark - sql

I have a table created in production with incorrect data.My rec_srt_dt and rec_end_dt columns have been loaded wrongly. rec_srt_dt is sys_dt and now I have modified the query to load the data properly. My question is how do I have to handle the existing data present in production table and how to add new changes to that data?
My source table is oracle, Using Spark for the transformations and the target table is in AWS.
Kindly help me in this.

Related

Azure Data Factory Incremental Load data by using Copy Activity

I would like to load incremental data from data lake into on premise SQL, so that i created data flow do the necessary data transformation and cleaning the data.
after that i copied all the final data sink to staging data lake to stored CSV format.
I am facing two kind of issues here.
when ever i am trigger / debug to loading my dataset(data flow full activity ), the first time data loaded in CSV, if I load second time similar pipeline, the target data lake, the CSV file loaded empty data, which means, the column header loaded but i could not see the any value inside file.
coming to copy activity, which is connected to on premise SQL server, i am trying to load the data but if we trigger this pipeline again and again, the duplicate data loaded, i want to load only incremental or if updated data comes from data lake CSV file. how do we handle this.
Kindly suggest.
When we want to incrementally load our data to a database table, we need to use the Upsert option in copy data tool.
Upsert helps you to incrementally load the source data based on a key column (or columns). If the key column is already present in target table, it will update the rest of the column values, else it will insert the new key column with other values.
Look at following demonstration to understand how upsert works. I used azure SQL database as an example.
My initial table data:
create table player(id int, gname varchar(20), team varchar(10))
My source csv data (data I want to incrementally load):
I have taken an id which already exists in target table (id=1) and another which is new (id=4).
My copy data sink configuration:
Create/select dataset for the target table. Check the Upsert option as your write behavior and select a key column based on which upsert should happen.
Table after upsert using Copy data:
Now, after the upsert using copy data, the id=1 row should be updated and id=4 row should be inserted. The following is the final output achieved which is inline with expected output.
You can use the primary key in your target table (which is also present in your source csv) as the key column in Copy data sink configuration. Any other configuration (like source filter by last modified configuration) should not effect the process.

Why isn't there an option to upsert data in Azure Data Factory inline sink

The problem I'm trying to tackle is inserting and/or updating dynamic tables in a sink within an Azure Data Factory data flow. I've managed to get the source data, transform it how I want it and then send it to a sink. The pipeline ran successfully and it said it copied 37 rows (as expected) but investigation showed that no data was actually deposited in the target table. This was because the Table Action on the sink was set to 'None'. So in trying to fix this last part, it seems I don't have the 'Create' option but do have the 'Recreate' option (see screenshot of the sink below) which is not what I want as the datasource will eventually only have changed data. I need the process to create the table if it doesn't exist and then Upsert data. (Recreate drops the table and then creates it).
If I change the sink type from Inline to Dataset, then I can select Insert and Upsert, etc options but this is then not dynamic as I need to select a specific dataset.
So has anyone come across the same issue and have you managed to have dynamic sinks in your data flow where the table is created if it doesn't exist, then upsert data.
I guess I can add a Pre SQL script which takes care of the 'create the table if it doesn't exist' but I still can't select the Upsert option with inline tables.
For the CREATE TABLE IF NOT EXISTS issue, I would recommend a Stored Procedure that is executed in the pipeline prior to the Data Flow.
For Inline vs Dataset, you can make the Dataset very flexible:
So still based on your runtime table name and no schema, so no need to target a specific table.
For the UPSERT issue, make sure you have an AlterRow activity before the Sink:

How to deal with data structure changes when performing a full historical data load?

I'm dealing with a SQL Server database which contains a column "defined data" with JSON data in it (and some other simple columns). The data builds up over time, right now we have about 8 million rows.
The data from this db is periodically read by an ETL system which then reads the JSON data in the "defined data" column and maps the data to a new SQL Server table based on the columns names contained in the JSON data.
This SQL Server table is prone to changes, meaning that about every 4 months additional columns are needed or column names change. Whenever this SQL Server table changes its data structure, a new version is introduced, which also forces the JSON data structure to change.
However, the ETL system should still be able to load all historical (JSON) data from the SQL Server database, regardless of the changing version throughout time. How can I make this work, taking into consideration version changes of the SQL Server tables and the JSON data?
!example]1
So in this example my question is:
How can I ensure that I can load both client 20 and 21 into one SQL Server table without getting errors because the JSON data structure is not reflecting version 2 in the case of historical data?
Given the size of the SQL Server database, it doesn't seem like an option to update all historical JSON data according to the latest version (in this example that would mean adding "AssetType" for the 01-01-2021 data and filling it in with NULL).
Many, many thanks in advance!
First I would check if json fields exist in the table as column names by looking them up in the information schema. If not exists then alter table add column.
How can I ensure that I can load both client 20 and 21 into one SQL Server table without getting errors because the JSON data structure is not reflecting version 2 in the case of historical data?
You maintain 2 separate tables. A Raw/Staging/Bronze table that has the same schema as the source, and a Cleansed/Warehouse/Silver table that has the desired schema for reporting. If you have multiple separate sources, you may have separate Raw tables.
Periodically you enhance the schema of the Cleansed table to add new data that has appeared in the Raw table.

aws Glue: Is it possible to pull only specific data from a database?

I need to transform a fairly big database table with aws Glue to csv. However I only the newest table rows from the past 24 hours. There ist a column which specifies the creation date of the row. Is it possible, to just transform these rows, without copying the whole table into the csv file? I am using a python script with Spark.
Thank you very much in advance!
There are some Built-in Transforms in AWS Glue which are used to process your data. This transfers can be called from ETL scripts.
Please refer the below link for the same :
https://docs.aws.amazon.com/glue/latest/dg/built-in-transforms.html
You haven't mentioned the type of database that you are trying connect. Anyway for JDBC connections spark has the option of query, in which you can issue the usual SQL query to get the rows you need.

Using SSIS to create new Database from two separate databases

I am new to SSIS.I got the task have according to the scenario as explained.
Scenario:
I have two databases A and B on different machines and have around 25 tables and 20 columns with relationships and dependencies. My task is to create a database C with selected no of tables and in each table I don't require all the columns but selected some. Conditions to be met are that the relationships should be intact and created automatically in new database.
What I have done:
I have created a package using the transfer SQL Server object task to transfer the tables and relationships.
then I have manually edited the columns that are not required
and then I transferred the data using the data source and destination
My question is: can I achieve all these things in one package? Also after I have transferred the data how can I schedule the package to just transfer the recently inserted rows in the database to the new database?
Please help me
thanks in advance
You can schedule the package by using a SQL Server Agent Job - one of the options for a job step is run SSIS package.
With regard to transferring new rows, I would either:
Track your current "position" in another table, assumes you have either an ascending key or a time stamp column - load the current position into an SSIS variable, use this variable in the WHERE statement of your data source queries.
Transfer all data across into "dump" copies of each table (no relationships/keys etc required just the same schema) & use a T-SQL MERGE statement to load new rows in, then truncate "dump" tables.
Hope this makes sense - its a bit difficult to get across in writing.