In Arrow-kt I'd like to create an alias to the bind() - for a kind of custom lib to use Arrow.
I'd expect the following to work but it doesn't:
suspend fun <F, S> Either<F, S>.bindMy(): S = this.bind()
The method I wanna target is
public interface EffectScope<in R> {
...
public suspend fun <B> Either<R, B>.bind(): B
I guess it doesn't work as I expect because of the EffectScope.
Any idea how I could make it work?
Thx
bind is defined in EffectScope or Raise (Arrow 2.0 snapshot) as an extension method over Either<A, B>.
You can go about this in different ways.
Use the upcoming context receivers feature if you are in JVM.
context(EffectScope<E>)
fun <E, A> Either<E, A>.myBind(): A = fold({ shift(it) }, ::identity)
Extend the EffectScope interface and define your fold machinery as Arrow does for EffectScope and Effect. Unfortunately, until context receivers are available, this is a more heavyweight solution. If you use the 2.0 snapshot, where all this is simpler, you will need to provide similar machinery like Raise and Effect.
If you'd like some help with any of this, we hang out in the Kotlin slack #Arrow channel
Kotlin coroutines and Arrow are a nice way to avoid nesting flatmaps, introducing monadic comprehensions in Kotlin. However Kotlin's Flow type still relies on declarative flatmapping, so we get into a mixture of direct and declarative styles:
override suspend fun findAll(page: Pageable): Either<BusinessException, Flow<PageElement<ClientOut>>> = either {
val count = clientRepository.count().awaitSingle().bind()
return clientRepository.findByIdNotNull(page).asFlow()
.flatMapMerge { client ->
flow { emit(mapDetailedClientOut(client)) }
}
}
val count has been bound inside the either {...} comprehension. However, there doesn't seem to be a way to do the same with Flow, forcing us to nest a flatmapMerge().
Is there a way to do it, or is it planned to be somehow included in the near future?
Sadly there is currently no way to build comphrehensions for the KotlinX Flow datatype, since Coroutines in Kotlin only support for single-shot emission/bind.
Therefore it's only possible to build comphrensions for data types with 0..1 elements such as Either or Nullable, but not 0..N like the Flow or List data types.
I wonder if it is possible to implement something similar to the do-notation of Haskell in Kotlin on Lists or List-Like structures with monadic properties.
Take following example:
fun <A, B> cartesianProduct(xs: List<A>, ys: List<B>): List<Pair<A, B>> =
xs.flatMap { x -> ys.flatMap { y -> listOf(x to y) } }
It would be nice if I could write something like
suspend fun <A, B> cartesianProduct(xs: List<A>, ys: List<B>): List<Pair<A, B>> =
list {
val x = xs.bind()
val y = xs.bind()
yield(x to y)
}
Arrow-Kt defines similar comprehensions using coroutines for either, nullable, option and eval. I looked at the implementation and also its Effect documentation, but I have trouble to translate the concept to Lists. Is this even possible in kotlin?
It's not possible at the moment to implement monad comprehension for List, Flow, and other non-deterministic data structures that emit more than one value. The current implementation of continuations in Kotlin is single shot only. This means a continuation can resume a program with a single emitted value. Resuming the program more than once requires hijacking the continuation stack labels with reflection in order to replay their state in the second resumption. Additionally replaying a block in which a multishot data type is binding would replay all effects previous to the bind since the block has to emit again.
list {
println("printed 3 times and not cool")
val a = listOf(1, 2, 3).bind()
a
}
The arrow-continuations library already includes a MultiShot delimited scope for reset/shift but it's currently internal since is not safe until Kotlin suspension or continuations provide the ability to multishot without replaying the current block. Alternatively we would need real for comprehensions or a similar structure to enforce binds happen before other code which would also solve the block replaying issue.
The Effect interface ultimately delegates to one of these scopes for its implementation. The current versions of Reset.suspended and Reset.restricted are single shot.
There are can be two ways of writing helper method in Kotlin
First is
object Helper {
fun doSomething(a: Any, b: Any): Any {
// Do some businesss logic and return result
}
}
Or simply writing this
fun doSomething(a: Any, b: Any): Any {
// Do some businesss logic and return result
}
inside a Helper.kt class.
So my question is in terms of performance and maintainability which is better and why?
In general, your first choice should be top-level functions. If a function has a clear "primary" argument, you can make it even more idiomatic by extracting it as the receiver of an extension function.
The object is nothing more than a holder of the namespace of its member functions. If you find that you have several groups of functions that you want to categorize, you can create several objects for them so you can qualify the calls with the object's name. There's little beyond this going in their favor in this role.
object as a language feature makes a lot more sense when it implements a well-known interface.
There's a third and arguably more idiomatic way: extension functions.
fun Int.add(b: Int): Int = this + b
And to use it:
val x = 1
val y = x.add(3) // 4
val z = 1.add(3) // 4
In terms of maintainability, I find extension functions just as easy to maintain as top-level functions or helper classes. I'm not a big fan of helper classes because they end up acquiring a lot of cruft over time (things people swear we'll reuse but never do, oddball variants of what we already have for special use cases, etc).
In terms of performance, these are all going to resolve more or less the same way - statically. The Kotlin compiler is effectively going to compile all of these down to the same java code - a class with a static method.
I am learning Kotlin and it is looking likely I may want to use it as my primary language within the next year. However, I keep getting conflicting research that Kotlin does or does not have immutable collections and I'm trying to figure out if I need to use Google Guava.
Can someone please give me some guidance on this? Does it by default use Immutable collections? What operators return mutable or immutable collections? If not, are there plans to implement them?
Kotlin's List from the standard library is readonly:
interface List<out E> : Collection<E> (source)
A generic ordered collection of elements. Methods in this interface
support only read-only access to the list; read/write access is
supported through the MutableList interface.
Parameters
E - the type of elements contained in the list.
As mentioned, there is also the MutableList
interface MutableList<E> : List<E>, MutableCollection<E> (source)
A generic ordered collection of elements that supports adding and
removing elements.
Parameters
E - the type of elements contained in the list.
Due to this, Kotlin enforces readonly behaviour through its interfaces, instead of throwing Exceptions on runtime like default Java implementations do.
Likewise, there is a MutableCollection, MutableIterable, MutableIterator, MutableListIterator, MutableMap, and MutableSet, see the stdlib documentation.
It is confusing but there are three, not two types of immutability:
Mutable - you are supposed to change the collection (Kotlin's MutableList)
Readonly - you are NOT supposed to change it (Kotlin's List) but something may (cast to Mutable, or change from Java)
Immutable - no one can change it (Guavas's immutable collections)
So in case (2) List is just an interface that does not have mutating methods, but you can change the instance if you cast it to MutableList.
With Guava (case (3)) you are safe from anybody to change the collection, even with a cast or from another thread.
Kotlin chose to be readonly in order to use Java collections directly, so there is no overhead or conversion in using Java collections..
As you see in other answers, Kotlin has readonly interfaces to mutable collections that let you view a collection through a readonly lens. But the collection can be bypassed via casting or manipulated from Java. But in cooperative Kotlin code that is fine, most uses do not need truly immutable collections and if your team avoids casts to the mutable form of the collection then maybe you don't need fully immutable collections.
The Kotlin collections allow both copy-on-change mutations, as well as lazy mutations. So to answer part of your questions, things like filter, map, flatmap, operators + - all create copies when used against non lazy collections. When used on a Sequence they modify the values as the collection as it is accessed and continue to be lazy (resulting in another Sequence). Although for a Sequence, calling anything such as toList, toSet, toMap will result in the final copy being made. By naming convention almost anything that starts with to is making a copy.
In other words, most operators return you the same type as you started with, and if that type is "readonly" then you will receive a copy. If that type is lazy, then you will lazily apply the change until you demand the collection in its entirety.
Some people want them for other reasons, such as parallel processing. In those cases, it might be best to look at really high performance collections designed just for those purposes. And only use them in those cases, not in all general cases.
In the JVM world it is hard to avoid interop with libraries that want standard Java collections, and converting to/from these collections adds a lot of pain and overhead for libraries that do not support the common interfaces. Kotlin gives a good mix of interop and lack of conversion, with readonly protection by contract.
So if you can't avoid wanting immutable collections, Kotlin easily works with anything from the JVM space:
Guava (https://github.com/google/guava)
Dexx a port of the Scala collections to Java (https://github.com/andrewoma/dexx) with Kotlin helpers (https://github.com/andrewoma/dexx/blob/master/kollection/README.md)
Eclipse Collections (formerly GS-Collections) a really high performance, JDK compatible, top performer in parallel processing with immutable and mutable variations (home: https://www.eclipse.org/collections/ and Github: https://github.com/eclipse/eclipse-collections)
PCollections (http://pcollections.org/)
Also, the Kotlin team is working on Immutable Collections natively for Kotlin, that effort can be seen here:
https://github.com/Kotlin/kotlinx.collections.immutable
There are many other collection frameworks out there for all different needs and constraints, Google is your friend for finding them. There is no reason the Kotlin team needs to reinvent them for its standard library. You have a lot of options, and they specialize in different things such as performance, memory use, not-boxing, immutability, etc. "Choice is Good" ... therefore some others: HPCC, HPCC-RT, FastUtil, Koloboke, Trove and more...
There are even efforts like Pure4J which since Kotlin supports Annotation processing now, maybe can have a port to Kotlin for similar ideals.
Kotlin 1.0 will not have immutable collections in the standard library. It does, however, have read-only and mutable interfaces. And nothing prevents you from using third party immutable collection libraries.
Methods in Kotlin's List interface "support only read-only access to the list" while methods in its MutableList interface support "adding and removing elements". Both of these, however, are only interfaces.
Kotlin's List interface enforces read-only access at compile-time instead of deferring such checks to run-time like java.util.Collections.unmodifiableList(java.util.List) (which "returns an unmodifiable view of the specified list... [where] attempts to modify the returned list... result in an UnsupportedOperationException." It does not enforce immutability.
Consider the following Kotlin code:
import com.google.common.collect.ImmutableList
import kotlin.test.assertEquals
import kotlin.test.assertFailsWith
fun main(args: Array<String>) {
val readOnlyList: List<Int> = arrayListOf(1, 2, 3)
val mutableList: MutableList<Int> = readOnlyList as MutableList<Int>
val immutableList: ImmutableList<Int> = ImmutableList.copyOf(readOnlyList)
assertEquals(readOnlyList, mutableList)
assertEquals(mutableList, immutableList)
// readOnlyList.add(4) // Kotlin: Unresolved reference: add
mutableList.add(4)
assertFailsWith(UnsupportedOperationException::class) { immutableList.add(4) }
assertEquals(readOnlyList, mutableList)
assertEquals(mutableList, immutableList)
}
Notice how readOnlyList is a List and methods such as add cannot be resolved (and won't compile), mutableList can naturally be mutated, and add on immutableList (from Google Guava) can also be resolved at compile-time but throws an exception at run-time.
All of the above assertions pass with exception of the last one which results in Exception in thread "main" java.lang.AssertionError: Expected <[1, 2, 3, 4]>, actual <[1, 2, 3]>. i.e. We successfully mutated a read-only List!
Note that using listOf(...) instead of arrayListOf(...) returns an effectively immutable list as you cannot cast it to any mutable list type. However, using the List interface for a variable does not prevent a MutableList from being assigned to it (MutableList<E> extends List<E>).
Finally, note that an interface in Kotlin (as well as in Java) cannot enforce immutability as it "cannot store state" (see Interfaces). As such, if you want an immutable collection you need to use something like those provided by Google Guava.
See also ImmutableCollectionsExplained · google/guava Wiki · GitHub
NOTE: This answer is here because the code is simple and open-source and you can use this idea to make your collections that you create immutable. It is not intended only as an advertisement of the library.
In Klutter library, are new Kotlin Immutable wrappers that use Kotlin delegation to wrap a existing Kotlin collection interface with a protective layer without any performance hit. There is then no way to cast the collection, its iterator, or other collections it might return into something that could be modified. They become in effect Immutable.
Klutter 1.20.0 released which adds immutable protectors for existing collections, based on a SO answer by #miensol provides a light-weight delegate around collections that prevents any avenue of modification including casting to a mutable type then modifying. And Klutter goes a step further by protecting sub collections such as iterator, listIterator, entrySet, etc. All of those doors are closed and using Kotlin delegation for most methods you take no hit in performance. Simply call myCollection.asReadonly() (protect) or myCollection.toImmutable() (copy then protect) and the result is the same interface but protected.
Here is an example from the code showing how simply the technique is, by basically delegating the interface to the actual class while overriding mutation methods and any sub-collections returned are wrapped on the fly.
/**
* Wraps a List with a lightweight delegating class that prevents casting back to mutable type
*/
open class ReadOnlyList <T>(protected val delegate: List<T>) : List<T> by delegate, ReadOnly, Serializable {
companion object {
#JvmField val serialVersionUID = 1L
}
override fun iterator(): Iterator<T> {
return delegate.iterator().asReadOnly()
}
override fun listIterator(): ListIterator<T> {
return delegate.listIterator().asReadOnly()
}
override fun listIterator(index: Int): ListIterator<T> {
return delegate.listIterator(index).asReadOnly()
}
override fun subList(fromIndex: Int, toIndex: Int): List<T> {
return delegate.subList(fromIndex, toIndex).asReadOnly()
}
override fun toString(): String {
return "ReadOnly: ${super.toString()}"
}
override fun equals(other: Any?): Boolean {
return delegate.equals(other)
}
override fun hashCode(): Int {
return delegate.hashCode()
}
}
Along with helper extension functions to make it easy to access:
/**
* Wraps the List with a lightweight delegating class that prevents casting back to mutable type,
* specializing for the case of the RandomAccess marker interface being retained if it was there originally
*/
fun <T> List<T>.asReadOnly(): List<T> {
return this.whenNotAlreadyReadOnly {
when (it) {
is RandomAccess -> ReadOnlyRandomAccessList(it)
else -> ReadOnlyList(it)
}
}
}
/**
* Copies the List and then wraps with a lightweight delegating class that prevents casting back to mutable type,
* specializing for the case of the RandomAccess marker interface being retained if it was there originally
*/
#Suppress("UNCHECKED_CAST")
fun <T> List<T>.toImmutable(): List<T> {
val copy = when (this) {
is RandomAccess -> ArrayList<T>(this)
else -> this.toList()
}
return when (copy) {
is RandomAccess -> ReadOnlyRandomAccessList(copy)
else -> ReadOnlyList(copy)
}
}
You can see the idea and extrapolate to create the missing classes from this code which repeats the patterns for other referenced types. Or view the full code here:
https://github.com/kohesive/klutter/blob/master/core-jdk6/src/main/kotlin/uy/klutter/core/common/Immutable.kt
And with tests showing some of the tricks that allowed modifications before, but now do not, along with the blocked casts and calls using these wrappers.
https://github.com/kohesive/klutter/blob/master/core-jdk6/src/test/kotlin/uy/klutter/core/collections/TestImmutable.kt
Now we have https://github.com/Kotlin/kotlinx.collections.immutable.
fun Iterable<T>.toImmutableList(): ImmutableList<T>
fun Iterable<T>.toImmutableSet(): ImmutableSet<T>
fun Iterable<T>.toPersistentList(): PersistentList<T>
fun Iterable<T>.toPersistentSet(): PersistentSet<T>