append 0's to dataframe string column if not specific length - pandas

I have a dataframe with a column object.
How do I append "0" at the end of strings which are of length 4.
Column
12356
1287
23868
5643
45634

You can use str.ljust whick takes as first argument the width that the string should be and the character to be filled with (on right side of string) if the width is less than the specified:
df['col'] = df['col'].str.ljust(width=5, fillchar='0')
print(df)
col
0 12356
1 12870
2 23868
3 56430
4 45634
Data setup:
import pandas as pd
df = pd.DataFrame(
{'col':'12356 1287 23868 5643 45634'.split()}
,dtype=('object'))
col
0 12356
1 1287
2 23868
3 5643
4 45634

One more method can be done using list comprehension
import pandas as pd
df = pd.DataFrame(
{'col': '12356 1287 23868 5643 45634'.split()}
, dtype=('object'))
df['col'] = [i + '0' if len(i) == 4 else i for i in df['col']]
output col:
col
0 12356
1 12870
2 23868
3 56430
4 45634

Related

How to change the order of columns in a pandas Dataframe [duplicate]

I have the following DataFrame (df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
I add more column(s) by assignment:
df['mean'] = df.mean(1)
How can I move the column mean to the front, i.e. set it as first column leaving the order of the other columns untouched?
One easy way would be to reassign the dataframe with a list of the columns, rearranged as needed.
This is what you have now:
In [6]: df
Out[6]:
0 1 2 3 4 mean
0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543
1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208
2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596
3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653
4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371
5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165
6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529
7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149
8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195
9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593
In [7]: cols = df.columns.tolist()
In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']
Rearrange cols in any way you want. This is how I moved the last element to the first position:
In [12]: cols = cols[-1:] + cols[:-1]
In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]
Then reorder the dataframe like this:
In [16]: df = df[cols] # OR df = df.ix[:, cols]
In [17]: df
Out[17]:
mean 0 1 2 3 4
0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616
1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551
2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694
3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019
4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485
5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447
6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473
7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914
8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561
9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
You could also do something like this:
df = df[['mean', '0', '1', '2', '3']]
You can get the list of columns with:
cols = list(df.columns.values)
The output will produce:
['0', '1', '2', '3', 'mean']
...which is then easy to rearrange manually before dropping it into the first function
Just assign the column names in the order you want them:
In [39]: df
Out[39]:
0 1 2 3 4 mean
0 0.172742 0.915661 0.043387 0.712833 0.190717 1
1 0.128186 0.424771 0.590779 0.771080 0.617472 1
2 0.125709 0.085894 0.989798 0.829491 0.155563 1
3 0.742578 0.104061 0.299708 0.616751 0.951802 1
4 0.721118 0.528156 0.421360 0.105886 0.322311 1
5 0.900878 0.082047 0.224656 0.195162 0.736652 1
6 0.897832 0.558108 0.318016 0.586563 0.507564 1
7 0.027178 0.375183 0.930248 0.921786 0.337060 1
8 0.763028 0.182905 0.931756 0.110675 0.423398 1
9 0.848996 0.310562 0.140873 0.304561 0.417808 1
In [40]: df = df[['mean', 4,3,2,1]]
Now, 'mean' column comes out in the front:
In [41]: df
Out[41]:
mean 4 3 2 1
0 1 0.190717 0.712833 0.043387 0.915661
1 1 0.617472 0.771080 0.590779 0.424771
2 1 0.155563 0.829491 0.989798 0.085894
3 1 0.951802 0.616751 0.299708 0.104061
4 1 0.322311 0.105886 0.421360 0.528156
5 1 0.736652 0.195162 0.224656 0.082047
6 1 0.507564 0.586563 0.318016 0.558108
7 1 0.337060 0.921786 0.930248 0.375183
8 1 0.423398 0.110675 0.931756 0.182905
9 1 0.417808 0.304561 0.140873 0.310562
For pandas >= 1.3 (Edited in 2022):
df.insert(0, 'mean', df.pop('mean'))
How about (for Pandas < 1.3, the original answer)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
In your case,
df = df.reindex(columns=['mean',0,1,2,3,4])
will do exactly what you want.
In my case (general form):
df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))
import numpy as np
import pandas as pd
df = pd.DataFrame()
column_names = ['x','y','z','mean']
for col in column_names:
df[col] = np.random.randint(0,100, size=10000)
You can try out the following solutions :
Solution 1:
df = df[ ['mean'] + [ col for col in df.columns if col != 'mean' ] ]
Solution 2:
df = df[['mean', 'x', 'y', 'z']]
Solution 3:
col = df.pop("mean")
df = df.insert(0, col.name, col)
Solution 4:
df.set_index(df.columns[-1], inplace=True)
df.reset_index(inplace=True)
Solution 5:
cols = list(df)
cols = [cols[-1]] + cols[:-1]
df = df[cols]
solution 6:
order = [1,2,3,0] # setting column's order
df = df[[df.columns[i] for i in order]]
Time Comparison:
Solution 1:
CPU times: user 1.05 ms, sys: 35 µs, total: 1.08 ms Wall time: 995 µs
Solution 2:
CPU times: user 933 µs, sys: 0 ns, total: 933 µs
Wall time: 800 µs
Solution 3:
CPU times: user 0 ns, sys: 1.35 ms, total: 1.35 ms
Wall time: 1.08 ms
Solution 4:
CPU times: user 1.23 ms, sys: 45 µs, total: 1.27 ms
Wall time: 986 µs
Solution 5:
CPU times: user 1.09 ms, sys: 19 µs, total: 1.11 ms
Wall time: 949 µs
Solution 6:
CPU times: user 955 µs, sys: 34 µs, total: 989 µs
Wall time: 859 µs
You need to create a new list of your columns in the desired order, then use df = df[cols] to rearrange the columns in this new order.
cols = ['mean'] + [col for col in df if col != 'mean']
df = df[cols]
You can also use a more general approach. In this example, the last column (indicated by -1) is inserted as the first column.
cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]
You can also use this approach for reordering columns in a desired order if they are present in the DataFrame.
inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df]
+ [col for col in df if col not in inserted_cols])
df = df[cols]
Suppose you have df with columns A B C.
The most simple way is:
df = df.reindex(['B','C','A'], axis=1)
If your column names are too-long-to-type then you could specify the new order through a list of integers with the positions:
Data:
0 1 2 3 4 mean
0 0.397312 0.361846 0.719802 0.575223 0.449205 0.500678
1 0.287256 0.522337 0.992154 0.584221 0.042739 0.485741
2 0.884812 0.464172 0.149296 0.167698 0.793634 0.491923
3 0.656891 0.500179 0.046006 0.862769 0.651065 0.543382
4 0.673702 0.223489 0.438760 0.468954 0.308509 0.422683
5 0.764020 0.093050 0.100932 0.572475 0.416471 0.389390
6 0.259181 0.248186 0.626101 0.556980 0.559413 0.449972
7 0.400591 0.075461 0.096072 0.308755 0.157078 0.207592
8 0.639745 0.368987 0.340573 0.997547 0.011892 0.471749
9 0.050582 0.714160 0.168839 0.899230 0.359690 0.438500
Generic example:
new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])
3 2 1 4 mean 0
0 0.575223 0.719802 0.361846 0.449205 0.500678 0.397312
1 0.584221 0.992154 0.522337 0.042739 0.485741 0.287256
2 0.167698 0.149296 0.464172 0.793634 0.491923 0.884812
3 0.862769 0.046006 0.500179 0.651065 0.543382 0.656891
4 0.468954 0.438760 0.223489 0.308509 0.422683 0.673702
5 0.572475 0.100932 0.093050 0.416471 0.389390 0.764020
6 0.556980 0.626101 0.248186 0.559413 0.449972 0.259181
7 0.308755 0.096072 0.075461 0.157078 0.207592 0.400591
8 0.997547 0.340573 0.368987 0.011892 0.471749 0.639745
9 0.899230 0.168839 0.714160 0.359690 0.438500 0.050582
Although it might seem like I'm just explicitly typing the column names in a different order, the fact that there's a column 'mean' should make it clear that new_order relates to actual positions and not column names.
For the specific case of OP's question:
new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)
mean 0 1 2 3 4
0 0.500678 0.397312 0.361846 0.719802 0.575223 0.449205
1 0.485741 0.287256 0.522337 0.992154 0.584221 0.042739
2 0.491923 0.884812 0.464172 0.149296 0.167698 0.793634
3 0.543382 0.656891 0.500179 0.046006 0.862769 0.651065
4 0.422683 0.673702 0.223489 0.438760 0.468954 0.308509
5 0.389390 0.764020 0.093050 0.100932 0.572475 0.416471
6 0.449972 0.259181 0.248186 0.626101 0.556980 0.559413
7 0.207592 0.400591 0.075461 0.096072 0.308755 0.157078
8 0.471749 0.639745 0.368987 0.340573 0.997547 0.011892
9 0.438500 0.050582 0.714160 0.168839 0.899230 0.359690
The main problem with this approach is that calling the same code multiple times will create different results each time, so one needs to be careful :)
This question has been answered before but reindex_axis is deprecated now so I would suggest to use:
df = df.reindex(sorted(df.columns), axis=1)
For those who want to specify the order they want instead of just sorting them, here's the solution spelled out:
df = df.reindex(['the','order','you','want'], axis=1)
Now, how you want to sort the list of column names is really not a pandas question, that's a Python list manipulation question. There are many ways of doing that, and I think this answer has a very neat way of doing it.
You can reorder the dataframe columns using a list of names with:
df = df.filter(list_of_col_names)
I think this is a slightly neater solution:
df.insert(0, 'mean', df.pop("mean"))
This solution is somewhat similar to #JoeHeffer 's solution but this is one liner.
Here we remove the column "mean" from the dataframe and attach it to index 0 with the same column name.
I ran into a similar question myself, and just wanted to add what I settled on. I liked the reindex_axis() method for changing column order. This worked:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
An alternate method based on the comment from #Jorge:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
Although reindex_axis seems to be slightly faster in micro benchmarks than reindex, I think I prefer the latter for its directness.
This function avoids you having to list out every variable in your dataset just to order a few of them.
def order(frame,var):
if type(var) is str:
var = [var] #let the command take a string or list
varlist =[w for w in frame.columns if w not in var]
frame = frame[var+varlist]
return frame
It takes two arguments, the first is the dataset, the second are the columns in the data set that you want to bring to the front.
So in my case I have a data set called Frame with variables A1, A2, B1, B2, Total and Date. If I want to bring Total to the front then all I have to do is:
frame = order(frame,['Total'])
If I want to bring Total and Date to the front then I do:
frame = order(frame,['Total','Date'])
EDIT:
Another useful way to use this is, if you have an unfamiliar table and you're looking with variables with a particular term in them, like VAR1, VAR2,... you may execute something like:
frame = order(frame,[v for v in frame.columns if "VAR" in v])
Simply do,
df = df[['mean'] + df.columns[:-1].tolist()]
Here's a way to move one existing column that will modify the existing dataframe in place.
my_column = df.pop('column name')
df.insert(3, my_column.name, my_column) # Is in-place
Just type the column name you want to change, and set the index for the new location.
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
For your case, this would be like:
df = change_column_order(df, 'mean', 0)
You could do the following (borrowing parts from Aman's answer):
cols = df.columns.tolist()
cols.insert(0, cols.pop(-1))
cols
>>>['mean', 0L, 1L, 2L, 3L, 4L]
df = df[cols]
Moving any column to any position:
import pandas as pd
df = pd.DataFrame({"A": [1,2,3],
"B": [2,4,8],
"C": [5,5,5]})
cols = df.columns.tolist()
column_to_move = "C"
new_position = 1
cols.insert(new_position, cols.pop(cols.index(column_to_move)))
df = df[cols]
I wanted to bring two columns in front from a dataframe where I do not know exactly the names of all columns, because they are generated from a pivot statement before.
So, if you are in the same situation: To bring columns in front that you know the name of and then let them follow by "all the other columns", I came up with the following general solution:
df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)
Here is a very simple answer to this(only one line).
You can do that after you added the 'n' column into your df as follows.
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
0 1 2 3 4 mean
0 0.929616 0.316376 0.183919 0.204560 0.567725 0.440439
1 0.595545 0.964515 0.653177 0.748907 0.653570 0.723143
2 0.747715 0.961307 0.008388 0.106444 0.298704 0.424512
3 0.656411 0.809813 0.872176 0.964648 0.723685 0.805347
4 0.642475 0.717454 0.467599 0.325585 0.439645 0.518551
5 0.729689 0.994015 0.676874 0.790823 0.170914 0.672463
6 0.026849 0.800370 0.903723 0.024676 0.491747 0.449473
7 0.526255 0.596366 0.051958 0.895090 0.728266 0.559587
8 0.818350 0.500223 0.810189 0.095969 0.218950 0.488736
9 0.258719 0.468106 0.459373 0.709510 0.178053 0.414752
### here you can add below line and it should work
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.
df = df[list(('mean',0, 1, 2,3,4))]
df
mean 0 1 2 3 4
0 0.440439 0.929616 0.316376 0.183919 0.204560 0.567725
1 0.723143 0.595545 0.964515 0.653177 0.748907 0.653570
2 0.424512 0.747715 0.961307 0.008388 0.106444 0.298704
3 0.805347 0.656411 0.809813 0.872176 0.964648 0.723685
4 0.518551 0.642475 0.717454 0.467599 0.325585 0.439645
5 0.672463 0.729689 0.994015 0.676874 0.790823 0.170914
6 0.449473 0.026849 0.800370 0.903723 0.024676 0.491747
7 0.559587 0.526255 0.596366 0.051958 0.895090 0.728266
8 0.488736 0.818350 0.500223 0.810189 0.095969 0.218950
9 0.414752 0.258719 0.468106 0.459373 0.709510 0.178053
You can use a set which is an unordered collection of unique elements to do keep the "order of the other columns untouched":
other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]
Then, you can use a lambda to move a specific column to the front by:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: df = pd.DataFrame(np.random.rand(10, 5))
In [4]: df["mean"] = df.mean(1)
In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]
In [6]: move_col_to_front(df, "mean")
Out[6]:
mean 0 1 2 3 4
0 0.697253 0.600377 0.464852 0.938360 0.945293 0.537384
1 0.609213 0.703387 0.096176 0.971407 0.955666 0.319429
2 0.561261 0.791842 0.302573 0.662365 0.728368 0.321158
3 0.518720 0.710443 0.504060 0.663423 0.208756 0.506916
4 0.616316 0.665932 0.794385 0.163000 0.664265 0.793995
5 0.519757 0.585462 0.653995 0.338893 0.714782 0.305654
6 0.532584 0.434472 0.283501 0.633156 0.317520 0.994271
7 0.640571 0.732680 0.187151 0.937983 0.921097 0.423945
8 0.562447 0.790987 0.200080 0.317812 0.641340 0.862018
9 0.563092 0.811533 0.662709 0.396048 0.596528 0.348642
In [7]: move_col_to_front(df, 2)
Out[7]:
2 0 1 3 4 mean
0 0.938360 0.600377 0.464852 0.945293 0.537384 0.697253
1 0.971407 0.703387 0.096176 0.955666 0.319429 0.609213
2 0.662365 0.791842 0.302573 0.728368 0.321158 0.561261
3 0.663423 0.710443 0.504060 0.208756 0.506916 0.518720
4 0.163000 0.665932 0.794385 0.664265 0.793995 0.616316
5 0.338893 0.585462 0.653995 0.714782 0.305654 0.519757
6 0.633156 0.434472 0.283501 0.317520 0.994271 0.532584
7 0.937983 0.732680 0.187151 0.921097 0.423945 0.640571
8 0.317812 0.790987 0.200080 0.641340 0.862018 0.562447
9 0.396048 0.811533 0.662709 0.596528 0.348642 0.563092
Just flipping helps often.
df[df.columns[::-1]]
Or just shuffle for a look.
import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]
You can use reindex which can be used for both axis:
df
# 0 1 2 3 4 mean
# 0 0.943825 0.202490 0.071908 0.452985 0.678397 0.469921
# 1 0.745569 0.103029 0.268984 0.663710 0.037813 0.363821
# 2 0.693016 0.621525 0.031589 0.956703 0.118434 0.484254
# 3 0.284922 0.527293 0.791596 0.243768 0.629102 0.495336
# 4 0.354870 0.113014 0.326395 0.656415 0.172445 0.324628
# 5 0.815584 0.532382 0.195437 0.829670 0.019001 0.478415
# 6 0.944587 0.068690 0.811771 0.006846 0.698785 0.506136
# 7 0.595077 0.437571 0.023520 0.772187 0.862554 0.538182
# 8 0.700771 0.413958 0.097996 0.355228 0.656919 0.444974
# 9 0.263138 0.906283 0.121386 0.624336 0.859904 0.555009
df.reindex(['mean', *range(5)], axis=1)
# mean 0 1 2 3 4
# 0 0.469921 0.943825 0.202490 0.071908 0.452985 0.678397
# 1 0.363821 0.745569 0.103029 0.268984 0.663710 0.037813
# 2 0.484254 0.693016 0.621525 0.031589 0.956703 0.118434
# 3 0.495336 0.284922 0.527293 0.791596 0.243768 0.629102
# 4 0.324628 0.354870 0.113014 0.326395 0.656415 0.172445
# 5 0.478415 0.815584 0.532382 0.195437 0.829670 0.019001
# 6 0.506136 0.944587 0.068690 0.811771 0.006846 0.698785
# 7 0.538182 0.595077 0.437571 0.023520 0.772187 0.862554
# 8 0.444974 0.700771 0.413958 0.097996 0.355228 0.656919
# 9 0.555009 0.263138 0.906283 0.121386 0.624336 0.859904
Hackiest method in the book
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
A pretty straightforward solution that worked for me is to use .reindex on df.columns:
df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]
Here is a function to do this for any number of columns.
def mean_first(df):
ncols = df.shape[1] # Get the number of columns
index = list(range(ncols)) # Create an index to reorder the columns
index.insert(0,ncols) # This puts the last column at the front
return(df.assign(mean=df.mean(1)).iloc[:,index]) # new df with last column (mean) first
A simple approach is using set(), in particular when you have a long list of columns and do not want to handle them manually:
cols = list(set(df.columns.tolist()) - set(['mean']))
cols.insert(0, 'mean')
df = df[cols]
How about using T?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
I believe #Aman's answer is the best if you know the location of the other column.
If you don't know the location of mean, but only have its name, you cannot resort directly to cols = cols[-1:] + cols[:-1]. Following is the next-best thing I could come up with:
meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

Two-level header in pandas?

I created a new dataframe from an old one and now I have something like this:
df = pd.DataFrame({0:[1,5,1,1,3]}, index=[243,254,507,1903,2358]).rename_axis('uid')
print (df)
0
uid
243 1
254 5
507 1
1903 1
2358 3
I don't really understand what it means. Is that a double header with the first header having just one index and the second having the other one? How can I transform this dataframe into having a single header, with names ['userID' , 'counts'] ?
Here is one column DataFrame with column 0 and index name uid.
So need:
df = df.reset_index()
df.columns = ['userID' , 'counts']
print (df)
userID counts
0 243 1
1 254 5
2 507 1
3 1903 1
4 2358 3
Another solution:
df = df.rename_axis('userID').squeeze().reset_index(name='counts')

How to add a new row to pandas dataframe with non-unique multi-index

df = pd.DataFrame(np.arange(4*3).reshape(4,3), index=[['a','a','b','b'],[1,2,1,2]], columns=list('xyz'))
where df looks like:
Now I add a new row by:
df.loc['new',:]=[0,0,0]
Then df becomes:
Now I want to do the same but with a different df that has non-unique multi-index:
df = pd.DataFrame(np.arange(4*3).reshape(4,3), index=[['a','a','b','b'],[1,1,2,2]], columns=list('xyz'))
,which looks like:
and call
df.loc['new',:]=[0,0,0]
The result is "Exception: cannot handle a non-unique multi-index!"
How could I achieve the goal?
Use append or concat with helper DataFrame:
df1 = pd.DataFrame([[0,0,0]],
columns=df.columns,
index=pd.MultiIndex.from_arrays([['new'], ['']]))
df2 = df.append(df1)
df2 = pd.concat([df, df1])
print (df2)
x y z
a 1 0 1 2
1 3 4 5
b 2 6 7 8
2 9 10 11
new 0 0 0

Why the column name is missing in pandas output in the group by result?

Update
if use to_frame() the column name seems not in the same row
重量
型号
HG-R2075 2040
HG220 680
This is my code, it groups the "型号"(which means type), and get the sum of the "重量"(weight) and exclude the column("是否发送") with a value in it.
import pandas as pd
import numpy as np
import sys
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir ) # change to the path that you already know
try:
ClientName = sys.argv[1]
except :
print(u'没有输入或者错误的客户名称!')
df = pd.read_excel("Summary.xlsm")
df = df[df['客户'].str.contains(ClientName)][pd.isnull(df[u"是否已经发送"])].groupby([ u'型号'])[u'重量'].sum()
print('[CQ:face,id=21] ' + '*' * 10 + u'以下是' + ClientName + u'未发送的重量' + '*' * 10 + '[CQ:face,id=21]')
print(str(df))
Output is this :
[CQ:face,id=21] **********以下是KATUN未发送的重量**********[CQ:face,id=
21]
型号 (****the column name is missing here*****)
HG-R2075 2040
HG220 680
Name: 重量, dtype: int64
I don't know why the column name is missing?
The output I want is this: how to make it?
型号 重量
HG-R2075 2040
HG220 680
Name: 重量, dtype: int64
The result df of your groupby operation is actually a Series, not a DataFrame. That's why it is printed with a different format.
print(df.to_frame()) should to the trick.
EDIT: Actually in such a dataframe index name and column name will not be printed on the same row. To get a cleaner output, use reset_index to get 2 proper columns:
print(df.reset_index().to_string(index=False))
First use boolean indexing with chaining by &.
If need 2 column DataFrame add as_index=False or Series.reset_index:
mask = df['客户'].str.contains(ClientName) & df[u"是否已经发送"].isnull()
df = df[mask].groupby([ u'型号'], as_index=False)[u'重量'].sum()
Or:
df = df[mask].groupby([ u'型号'])[u'重量'].sum().reset_index()
For one column DataFrame use Series.to_frame - first column is index:
df = df[mask].groupby([ u'型号'])[u'重量'].sum().to_frame()
Sample:
np.random.seed(345)
N = 10
df = pd.DataFrame({'客户':np.random.choice(list('abc'), size=N),
u"是否已经发送":np.random.choice([np.nan,0], size=N),
u'型号':np.random.randint(2, size=N),
u'重量':np.random.randint(10, size=N)})
print (df)
型号 客户 是否已经发送 重量
0 0 a 0.0 4
1 0 a 0.0 0
2 1 b NaN 8
3 1 b NaN 5
4 1 c 0.0 6
5 1 a NaN 3
6 1 a NaN 3
7 1 b 0.0 4
8 0 a NaN 2
9 1 c NaN 8
ClientName = 'a'
mask = df['客户'].str.contains(ClientName) & df[u"是否已经发送"].isnull()
df1 = df[mask].groupby([ u'型号'], as_index=False)[u'重量'].sum()
print(df1)
型号 重量
0 0 2
1 1 6
df1 = df[mask].groupby([ u'型号'])[u'重量'].sum().reset_index()
print(df1)
型号 重量
0 0 2
1 1 6
df2 = df[mask].groupby([ u'型号'])[u'重量'].sum().to_frame()
print (df2)
重量
型号
0 2
1 6

Removing part of a string in every column in pandas dataframe after a symbol

I want to remove everything after '-' in each row in one column in a pandas dataframe. I have tried str.split to no avail.
Try this:
df['column'] = df['column'].str.replace(r'-.*$', '')
Demo:
In [154]: df
Out[154]:
column
0 aaa
1 asd-bfd-asd
2 -xsdert-...
3 123-345
In [155]: df['column'] = df['column'].str.replace(r'-.*$', '')
In [156]: df
Out[156]:
column
0 aaa
1 asd
2
3 123
or using .str.split():
In [159]: df['column'] = df['column'].str.split('-').str[0]
In [160]: df
Out[160]:
column
0 aaa
1 asd
2
3 123