Pyspark sum of columns after union of dataframe - dataframe

How can I sum all columns after unioning two dataframe ?
I have this first df with one row per user:
df = sqlContext.createDataFrame([("2022-01-10", 3, 2,"a"),("2022-01-10",3,4,"b"),("2022-01-10", 1,3,"c")], ["date", "value1", "value2", "userid"])
df.show()
+----------+------+------+------+
| date|value1|value2|userid|
+----------+------+------+------+
|2022-01-10| 3| 2| a|
|2022-01-10| 3| 4| b|
|2022-01-10| 1| 3| c|
+----------+------+------+------+
date value will always be the today's date.
and I have another df, with multiple row per userid this time, so one value for each day:
df2 = sqlContext.createDataFrame([("2022-01-01", 13, 12,"a"),("2022-01-02",13,14,"b"),("2022-01-03", 11,13,"c"),
("2022-01-04", 3, 2,"a"),("2022-01-05",3,4,"b"),("2022-01-06", 1,3,"c"),
("2022-01-10", 31, 21,"a"),("2022-01-07",31,41,"b"),("2022-01-09", 11,31,"c")], ["date", "value3", "value4", "userid"])
df2.show()
+----------+------+------+------+
| date|value3|value4|userid|
+----------+------+------+------+
|2022-01-01| 13| 12| a|
|2022-01-02| 13| 14| b|
|2022-01-03| 11| 13| c|
|2022-01-04| 3| 2| a|
|2022-01-05| 3| 4| b|
|2022-01-06| 1| 3| c|
|2022-01-10| 31| 21| a|
|2022-01-07| 31| 41| b|
|2022-01-09| 11| 31| c|
+----------+------+------+------+
After unioning the two of them with this function, here what I have:
def union_different_tables(df1, df2):
columns_df1 = df1.columns
columns_df2 = df2.columns
data_types_df1 = [i.dataType for i in df1.schema.fields]
data_types_df2 = [i.dataType for i in df2.schema.fields]
for col, _type in zip(columns_df1, data_types_df1):
if col not in df2.columns:
df2 = df2.withColumn(col, f.lit(None).cast(_type))
for col, _type in zip(columns_df2, data_types_df2):
if col not in df1.columns:
df1 = df1.withColumn(col, f.lit(None).cast(_type))
union = df1.unionByName(df2)
return union
+----------+------+------+------+------+------+
| date|value1|value2|userid|value3|value4|
+----------+------+------+------+------+------+
|2022-01-10| 3| 2| a| null| null|
|2022-01-10| 3| 4| b| null| null|
|2022-01-10| 1| 3| c| null| null|
|2022-01-01| null| null| a| 13| 12|
|2022-01-02| null| null| b| 13| 14|
|2022-01-03| null| null| c| 11| 13|
|2022-01-04| null| null| a| 3| 2|
|2022-01-05| null| null| b| 3| 4|
|2022-01-06| null| null| c| 1| 3|
|2022-01-10| null| null| a| 31| 21|
|2022-01-07| null| null| b| 31| 41|
|2022-01-09| null| null| c| 11| 31|
+----------+------+------+------+------+------+
What I want to get is the sum of all columns in df2 (I have 10 of them in the real case) till the date of the day for each userid, so one row per user:
+----------+------+------+------+------+------+
| date|value1|value2|userid|value3|value4|
+----------+------+------+------+------+------+
|2022-01-10| 3| 2| a| 47 | 35 |
|2022-01-10| 3| 4| b| 47 | 59 |
|2022-01-10| 1| 3| c| 23 | 47 |
+----------+------+------+------+------+------+
Since I have to do this operation for multiple tables, here what I tried:
user_window = Window.partitionBy(['userid']).orderBy('date')
list_tables = [df2]
list_col_original = df.columns
for table in list_tables:
df = union_different_tables(df, table)
list_column = list(set(table.columns) - set(list_col_original))
list_col_original.extend(list_column)
df = df.select('userid',
*[f.sum(f.col(col_name)).over(user_window).alias(col_name) for col_name in list_column])
df.show()
+------+------+------+
|userid|value4|value3|
+------+------+------+
| c| 13| 11|
| c| 16| 12|
| c| 47| 23|
| c| 47| 23|
| b| 14| 13|
| b| 18| 16|
| b| 59| 47|
| b| 59| 47|
| a| 12| 13|
| a| 14| 16|
| a| 35| 47|
| a| 35| 47|
+------+------+------+
But that give me a sort of cumulative sum, plus I didn't find a way to add all the columns in the resulting df.
The only thing is that I can't do any join ! My df are very very large and any join is taking too long to compute.
Do you know how I can fix my code to have the result I want ?

After union of df1 and df2, you can group by userid and sum all columns except date for which you get the max.
Note that for the union part, you can actually use DataFrame.unionByName if you have the same data types but only number of columns can differ:
df = df1.unionByName(df2, allowMissingColumns=True)
Then group by and agg:
import pyspark.sql.functions as F
result = df.groupBy("userid").agg(
F.max("date").alias("date"),
*[F.sum(c).alias(c) for c in df.columns if c not in ("date", "userid")]
)
result.show()
#+------+----------+------+------+------+------+
#|userid| date|value1|value2|value3|value4|
#+------+----------+------+------+------+------+
#| a|2022-01-10| 3| 2| 47| 35|
#| b|2022-01-10| 3| 4| 47| 59|
#| c|2022-01-10| 1| 3| 23| 47|
#+------+----------+------+------+------+------+
This supposes the second dataframe contains only dates prior to the today date in the first one. Otherwise, you'll need to filter df2 before union.

Related

sum of row values within a window range in spark dataframe

I have a dataframe as shown below where count column is having number of columns that has to added to get a new column.
+---+----+----+------------+
| ID|date| A| count|
+---+----+----+------------+
| 1| 1| 10| null|
| 1| 2| 10| null|
| 1| 3|null| null|
| 1| 4| 20| 1|
| 1| 5|null| null|
| 1| 6|null| null|
| 1| 7| 60| 2|
| 1| 7| 60| null|
| 1| 8|null| null|
| 1| 9|null| null|
| 1| 10|null| null|
| 1| 11| 80| 3|
| 2| 1| 10| null|
| 2| 2| 10| null|
| 2| 3|null| null|
| 2| 4| 20| 1|
| 2| 5|null| null|
| 2| 6|null| null|
| 2| 7| 60| 2|
+---+----+----+------------+
The expected output is as shown below.
+---+----+----+-----+-------+
| ID|date| A|count|new_col|
+---+----+----+-----+-------+
| 1| 1| 10| null| null|
| 1| 2| 10| null| null|
| 1| 3| 10| null| null|
| 1| 4| 20| 2| 30|
| 1| 5| 10| null| null|
| 1| 6| 10| null| null|
| 1| 7| 60| 3| 80|
| 1| 7| 60| null| null|
| 1| 8|null| null| null|
| 1| 9|null| null| null|
| 1| 10| 10| null| null|
| 1| 11| 80| 2| 90|
| 2| 1| 10| null| null|
| 2| 2| 10| null| null|
| 2| 3|null| null| null|
| 2| 4| 20| 1| 20|
| 2| 5|null| null| null|
| 2| 6| 20| null| null|
| 2| 7| 60| 2| 80|
+---+----+----+-----+-------+
I tried with window function as follows
val w2 = Window.partitionBy("ID").orderBy("date")
val newDf = df
.withColumn("new_col", when(col("A").isNotNull && col("count").isNotNull, sum(col("A).over(Window.partitionBy("ID").orderBy("date").rowsBetween(Window.currentRow - (col("count")), Window.currentRow)))
But I am getting error as below.
error: overloaded method value - with alternatives:
(x: Long)Long <and>
(x: Int)Long <and>
(x: Char)Long <and>
(x: Short)Long <and>
(x: Byte)Long
cannot be applied to (org.apache.spark.sql.Column)
seems like the column value provided inside window function is causing the issue.
Any idea about how to resolve this error to achieve the requirement or any other alternative solutions?
Any leads appreciated !

SQL or Pyspark - Get the last time a column had a different value for each ID

I am using pyspark so I have tried both pyspark code and SQL.
I am trying to get the time that the ADDRESS column was a different value, grouped by USER_ID. The rows are ordered by TIME. Take the below table:
+---+-------+-------+----+
| ID|USER_ID|ADDRESS|TIME|
+---+-------+-------+----+
| 1| 1| A| 10|
| 2| 1| B| 15|
| 3| 1| A| 20|
| 4| 1| A| 40|
| 5| 1| A| 45|
+---+-------+-------+----+
The correct new column I would like is as below:
+---+-------+-------+----+---------+
| ID|USER_ID|ADDRESS|TIME|LAST_DIFF|
+---+-------+-------+----+---------+
| 1| 1| A| 10| null|
| 2| 1| B| 15| 10|
| 3| 1| A| 20| 15|
| 4| 1| A| 40| 15|
| 5| 1| A| 45| 15|
+---+-------+-------+----+---------+
I have tried using different windows but none ever seem to get exactly what I want. Any ideas?
A simplified version of #jxc's answer.
from pyspark.sql.functions import *
from pyspark.sql import Window
#Window definition
w = Window.partitionBy(col('user_id')).orderBy(col('id'))
#Getting the previous time and classifying rows into groups
grp_df = df.withColumn('grp',sum(when(lag(col('address')).over(w) == col('address'),0).otherwise(1)).over(w)) \
.withColumn('prev_time',lag(col('time')).over(w))
#Window definition with groups
w_grp = Window.partitionBy(col('user_id'),col('grp')).orderBy(col('id'))
grp_df.withColumn('last_addr_change_time',min(col('prev_time')).over(w_grp)).show()
Use lag with running sum to assign groups when there is a change in the column value (based on the defined window). Get the time from the previous row, which will be used in the next step.
Once you get the groups, use the running minimum to get the last timestamp of the column value change. (Suggest you look at the intermediate results to understand the transformations better)
One way using two Window specs:
from pyspark.sql.functions import when, col, lag, sum as fsum
from pyspark.sql import Window
w1 = Window.partitionBy('USER_ID').orderBy('ID')
w2 = Window.partitionBy('USER_ID').orderBy('g')
# create a new sub-group label based on the values of ADDRESS and Previous ADDRESS
df1 = df.withColumn('g', fsum(when(col('ADDRESS') == lag('ADDRESS').over(w1), 0).otherwise(1)).over(w1))
# group by USER_ID and the above sub-group label and calculate the sum of time in the group as diff
# calculate the last_diff and then join the data back to the df1
df2 = df1.groupby('USER_ID', 'g').agg(fsum('Time').alias('diff')).withColumn('last_diff', lag('diff').over(w2))
df1.join(df2, on=['USER_ID', 'g']).show()
+-------+---+---+-------+----+----+---------+
|USER_ID| g| ID|ADDRESS|TIME|diff|last_diff|
+-------+---+---+-------+----+----+---------+
| 1| 1| 1| A| 10| 10| null|
| 1| 2| 2| B| 15| 15| 10|
| 1| 3| 3| A| 20| 105| 15|
| 1| 3| 4| A| 40| 105| 15|
| 1| 3| 5| A| 45| 105| 15|
+-------+---+---+-------+----+----+---------+
df_new = df1.join(df2, on=['USER_ID', 'g']).drop('g', 'diff')

Counting number of nulls in pyspark dataframe by row

So I want to count the number of nulls in a dataframe by row.
Please note, there are 50+ columns, I know I could do a case/when statement to do this, but I would prefer a neater solution.
For example, a subset:
columns = ['id', 'item1', 'item2', 'item3']
vals = [(1, 2, 0, None),(2, None, 1, None),(3,None,9, 1)]
df=spark.createDataFrame(vals,columns)
df.show()
+---+-----+-----+-----+
| id|item1|item2|item3|
+---+-----+-----+-----+
| 1| 2| 'A'| null|
| 2| null| 1| null|
| 3| null| 9| 'C'|
+---+-----+-----+-----+
After running the code, the desired output is:
+---+-----+-----+-----+--------+
| id|item1|item2|item3|numNulls|
+---+-----+-----+-----+--------+
| 1| 2| 'A'| null| 1|
| 2| null| 1| null| 2|
| 3| null| 9| 'C'| 1|
+---+-----+-----+-----+--------+
EDIT: Not all non null values are ints.
Convert null to 1 and others to 0 and then sum all the columns:
df.withColumn('numNulls', sum(df[col].isNull().cast('int') for col in df.columns)).show()
+---+-----+-----+-----+--------+
| id|item1|item2|item3|numNulls|
+---+-----+-----+-----+--------+
| 1| 2| 0| null| 1|
| 2| null| 1| null| 2|
| 3| null| 9| 1| 1|
+---+-----+-----+-----+--------+

Getting Memory Error in PySpark during Filter & GroupBy computation

This is the Error :
Job aborted due to stage failure: Task 12 in stage 37.0 failed 4 times, most recent failure: Lost task 12.3 in stage 37.0 (TID 325, 10.139.64.5, executor 20): ExecutorLostFailure (executor 20 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages*
So is there any alternative, more efficient way to apply those function without causing out-of-memory error? I have the data in Billions to be computed.
Input Dataframe on which filtering is to be done:
+------+-------+-------+------+-------+-------+
|Pos_id|level_p|skill_p|Emp_id|level_e|skill_e|
+------+-------+-------+------+-------+-------+
| 1| 2| a| 100| 2| a|
| 1| 2| a| 100| 3| f|
| 1| 2| a| 100| 2| d|
| 1| 2| a| 101| 4| a|
| 1| 2| a| 101| 5| b|
| 1| 2| a| 101| 1| e|
| 1| 2| a| 102| 5| b|
| 1| 2| a| 102| 3| d|
| 1| 2| a| 102| 2| c|
| 2| 2| d| 100| 2| a|
| 2| 2| d| 100| 3| f|
| 2| 2| d| 100| 2| d|
| 2| 2| d| 101| 4| a|
| 2| 2| d| 101| 5| b|
| 2| 2| d| 101| 1| e|
| 2| 2| d| 102| 5| b|
| 2| 2| d| 102| 3| d|
| 2| 2| d| 102| 2| c|
| 2| 4| b| 100| 2| a|
| 2| 4| b| 100| 3| f|
+------+-------+-------+------+-------+-------+
Filtering Code:
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
from pyspark.sql import functions as sf
function = udf(lambda item, items: 1 if item in items else 0, IntegerType())
df_result = new_df.withColumn('result', function(sf.col('skill_p'), sf.col('skill_e')))
df_filter = df_result.filter(sf.col("result") == 1)
df_filter.show()
res = df_filter.groupBy("Pos_id", "Emp_id").agg(
sf.collect_set("skill_p").alias("SkillsMatch"),
sf.sum("result").alias("SkillsMatchedCount"))
res.show()
This needs to be done on Billions of rows.

Pyspark: Add new Column contain a value in a column counterpart another value in another column that meets a specified condition

Add new Column contain a value in a column counterpart another value in another column that meets a specified condition
For instance,
original DF as follows:
+-----+-----+-----+
|col1 |col2 |col3 |
+-----+-----+-----+
| A| 17| 1|
| A| 16| 2|
| A| 18| 2|
| A| 30| 3|
| B| 35| 1|
| B| 34| 2|
| B| 36| 2|
| C| 20| 1|
| C| 30| 1|
| C| 43| 1|
+-----+-----+-----+
I need to repeat the value in col2 that counterpart to 1 in col3 for each col1's groups. and if there are more value =1 in col3 for any group from col1 repeat the minimum value
the desired Df as follows:
+----+----+----+----------+
|col1|col2|col3|new_column|
+----+----+----+----------+
| A| 17| 1| 17|
| A| 16| 2| 17|
| A| 18| 2| 17|
| A| 30| 3| 17|
| B| 35| 1| 35|
| B| 34| 2| 35|
| B| 36| 2| 35|
| C| 20| 1| 20|
| C| 30| 1| 20|
| C| 43| 1| 20|
+----+----+----+----------+
df3=df.filter(df.col3==1)
+----+----+----+
|col1|col2|col3|
+----+----+----+
| B| 35| 1|
| C| 20| 1|
| C| 30| 1|
| C| 43| 1|
| A| 17| 1|
+----+----+----+
df3.createOrReplaceTempView("mytable")
To obtain minimum value of col2 I followed the accepted answer in this link How to find exact median for grouped data in Spark
df6=spark.sql("select col1, min(col2) as minimum from mytable group by col1 order by col1")
df6.show()
+----+-------+
|col1|minimum|
+----+-------+
| A| 17|
| B| 35|
| C| 20|
+----+-------+
df_a=df.join(df6,['col1'],'leftouter')
+----+----+----+-------+
|col1|col2|col3|minimum|
+----+----+----+-------+
| B| 35| 1| 35|
| B| 34| 2| 35|
| B| 36| 2| 35|
| C| 20| 1| 20|
| C| 30| 1| 20|
| C| 43| 1| 20|
| A| 17| 1| 17|
| A| 16| 2| 17|
| A| 18| 2| 17|
| A| 30| 3| 17|
+----+----+----+-------+
Is there way better than this solution?