I have a list of date's data in daily basis below:
| Daytime | Item | Category| Value |
| -------- |------|------- |-------|
| 01.01.2022|A |1 |500 |
| 02.01.2022|A |1 |500 |
| 03.01.2022|A |1 |80000 |
| 04.01.2022|A |1 |500 |
| 05.01.2022|A |1 |500 |
| 01.01.2022|A |2 |600 |
| 02.01.2022|A |2 |600 |
| 03.01.2022|A |2 |600 |
| 04.01.2022|A |2 |600 |
| 05.01.2022|A |2 |600 |
| 01.01.2022|C |1 |600 |
| 02.01.2022|C |1 |600 |
| 03.01.2022|C |1 |600 |
| 04.01.2022|C |1 |600 |
| 05.01.2022|C |1 |600 |
How can i transform the data into this form?
| FromDate | ToDate | Item |Category| Value |
| --------- |--------- |------|------ |-------|
| 01.01.2022| 02.01.2022|A |1 |500 |
| 03.01.2022| 03.01.2022|A |1 |80000 |
| 04.01.2022| 05.01.2022|A |1 |500 |
| 01.01.2022| 05.01.2022|A |2 |600 |
| 01.01.2022| 05.01.2022|C |1 |600 |
I want to group the value (by item and category too) only if they are same for consecutive dates, please help, thank you!
Date format in DD.MM.YYYY and daytime's datatype is Date.
Following script for questions:
(SELECT to_date('01/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 1 Category, 500 Value FROM dual UNION ALL
SELECT to_date('02/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 1 Category, 500 Value FROM dual UNION ALL
SELECT to_date('03/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 1 Category, 80000 Value FROM dual UNION ALL
SELECT to_date('04/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 1 Category, 500 Value FROM dual UNION ALL
SELECT to_date('05/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 1 Category, 500 Value FROM dual UNION ALL
SELECT to_date('01/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 2 Category, 600 Value FROM dual UNION ALL
SELECT to_date('02/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 2 Category, 600 Value FROM dual UNION ALL
SELECT to_date('03/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 2 Category, 600 Value FROM dual UNION ALL
SELECT to_date('04/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 2 Category, 600 Value FROM dual UNION ALL
SELECT to_date('05/01/2022', 'dd/mm/yyyy') daytime, 'A' Item, 2 Category, 600 Value FROM dual UNION ALL
SELECT to_date('01/01/2022', 'dd/mm/yyyy') daytime, 'C' Item, 1 Category, 600 Value FROM dual UNION ALL
SELECT to_date('02/01/2022', 'dd/mm/yyyy') daytime, 'C' Item, 1 Category, 600 Value FROM dual UNION ALL
SELECT to_date('03/01/2022', 'dd/mm/yyyy') daytime, 'C' Item, 1 Category, 600 Value FROM dual UNION ALL
SELECT to_date('04/01/2022', 'dd/mm/yyyy') daytime, 'C' Item, 1 Category, 600 Value FROM dual UNION ALL
SELECT to_date('05/01/2022', 'dd/mm/yyyy') daytime, 'C' Item, 1 Category, 600 Value FROM dual)
You can use common table expression (cte) technique for that purpose.
with YourSample ( Daytime, Item, Category, Value) as (
select to_date('01.01.2022', 'DD.MM.YYYY'), 'A', 1, 500 from dual union all
select to_date('02.01.2022', 'DD.MM.YYYY'), 'A', 1, 500 from dual union all
select to_date('03.01.2022', 'DD.MM.YYYY'), 'A', 1, 80000 from dual union all
select to_date('04.01.2022', 'DD.MM.YYYY'), 'A', 1, 500 from dual union all
select to_date('05.01.2022', 'DD.MM.YYYY'), 'A', 1, 500 from dual union all
select to_date('01.01.2022', 'DD.MM.YYYY'), 'A', 2, 600 from dual union all
select to_date('02.01.2022', 'DD.MM.YYYY'), 'A', 2, 600 from dual union all
select to_date('03.01.2022', 'DD.MM.YYYY'), 'A', 2, 600 from dual union all
select to_date('04.01.2022', 'DD.MM.YYYY'), 'A', 2, 600 from dual union all
select to_date('05.01.2022', 'DD.MM.YYYY'), 'A', 2, 600 from dual union all
select to_date('01.01.2022', 'DD.MM.YYYY'), 'C', 1, 600 from dual union all
select to_date('02.01.2022', 'DD.MM.YYYY'), 'C', 1, 600 from dual union all
select to_date('03.01.2022', 'DD.MM.YYYY'), 'C', 1, 600 from dual union all
select to_date('04.01.2022', 'DD.MM.YYYY'), 'C', 1, 600 from dual union all
select to_date('05.01.2022', 'DD.MM.YYYY'), 'C', 1, 600 from dual
)
, YourSampleRanked (Daytime, Item, Category, Value, rnb) as (
select Daytime, Item, Category, Value
, row_number()over(PARTITION BY ITEM, CATEGORY ORDER BY DAYTIME) rnb
from YourSample
)
, cte (Daytime, Item, Category, Value, rnb, grp) as (
select Daytime, Item, Category, Value, rnb, 1 grp
from YourSampleRanked
where rnb = 1
union all
select t.Daytime, t.Item, t.Category, t.Value, t.rnb
, decode( t.Value, c.Value, c.grp, c.grp + 1 ) grp
from YourSampleRanked t
join cte c
on ( c.Category = t.Category and c.Item = t.Item and t.rnb = c.rnb + 1 )
)
select min(DAYTIME) FromDate, max(DAYTIME) ToDate, ITEM, CATEGORY, min(Value) Value
from cte
GROUP BY GRP, ITEM, CATEGORY
order by ITEM, CATEGORY, FromDate
;
demo on fiddle<>db
You can also use the MATCH_RECOGNIZE clause for the same purpose if you are running Oracle 12c and later.
select FromDate, toDate, ITEM, CATEGORY, VALUE
from YourSample
MATCH_RECOGNIZE (
PARTITION BY ITEM, CATEGORY
ORDER BY DAYTIME
MEASURES first(STRT.VALUE) as VALUE,
first(STRT.DAYTIME) as FromDate,
nvl(last(SAME.DAYTIME), first(STRT.DAYTIME)) as toDate
ONE ROW PER MATCH
PATTERN (STRT Same*)
DEFINE
Same AS VALUE = PREV(VALUE)
) MR
ORDER BY ITEM, CATEGORY, FromDate, toDate
;
demo2 on fiddle
From Oracle 12, you can use MATCH_RECOGNIZE to perform row-by-row processing:
SELECT *
FROM table_name
MATCH_RECOGNIZE (
PARTITION BY item, category
ORDER BY daytime
MEASURES
FIRST(daytime) AS from_date,
LAST(daytime) AS to_date,
FIRST(value) AS value
ONE ROW PER MATCH
PATTERN (same_value+)
DEFINE
same_value AS FIRST(value) = value
)
Which, for the sample data:
CREATE TABLE table_name (daytime, item, category, value) AS
SELECT DATE '2022-01-01', 'A', 1, 500 FROM DUAL UNION ALL
SELECT DATE '2022-01-02', 'A', 1, 500 FROM DUAL UNION ALL
SELECT DATE '2022-01-03', 'A', 1, 80000 FROM DUAL UNION ALL
SELECT DATE '2022-01-04', 'A', 1, 500 FROM DUAL UNION ALL
SELECT DATE '2022-01-05', 'A', 1, 500 FROM DUAL UNION ALL
SELECT DATE '2022-01-01', 'A', 2, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-02', 'A', 2, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-03', 'A', 2, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-04', 'A', 2, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-05', 'A', 2, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-01', 'C', 1, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-02', 'C', 1, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-03', 'C', 1, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-04', 'C', 1, 600 FROM DUAL UNION ALL
SELECT DATE '2022-01-05', 'C', 1, 600 FROM DUAL
Outputs:
ITEM
CATEGORY
FROM_DATE
TO_DATE
VALUE
A
1
2022-01-01 00:00:00
2022-01-02 00:00:00
500
A
1
2022-01-03 00:00:00
2022-01-03 00:00:00
80000
A
1
2022-01-04 00:00:00
2022-01-05 00:00:00
500
A
2
2022-01-01 00:00:00
2022-01-05 00:00:00
600
C
1
2022-01-01 00:00:00
2022-01-05 00:00:00
600
db<>fiddle here
This is a job for a GROUP BY using TRUNC(daytime, 'MM'). TRUNC(), when used with dates, truncates them to the beginning of a calendar / clock period.
SELECT TRUNC(Daytime, 'MM') FromDate,
ADD_MONTHS(TRUNC(Daytime, 'MM'), 1) ToDate,
Item, Category,
SUM(Value) Value
FROM my_table
GROUP BY TRUNC(Daytime, 'MM'), Item, Category
Or alternatively you can avoid those arcane Oracle date format specifiers like 'MM' and go with LAST_DAY().
SELECT ADD_MONTHS(LAST_DAY(Daytime) + 1, -1) FromDate,
LAST_DAY(Daytime) + 1 ToDate,
Item, Category,
SUM(Value) Value
FROM my_table
GROUP BY LAST_DAY(Daytime), Item, Category
Related
I am working in oracle sql. I have two table which is linked to each other by one column - company_id (see on the picture); I want to merge table 1 to table 2 and calculate 6 month average (6 month before period from table 2) of income for each company_id and each date of table2. I appreciate any code/idea how to solve this task.
You can use an analytic range window to calculate the averages for table1 and then JOIN the result to table2:
SELECT t2.*,
t1.avg_income_6,
t1.avg_income_12
FROM table2 t2
LEFT OUTER JOIN (
SELECT company_id,
dt,
ROUND(AVG(income) OVER (
PARTITION BY company_id
ORDER BY dt
RANGE BETWEEN INTERVAL '5' MONTH PRECEDING
AND INTERVAL '0' MONTH FOLLOWING
), 2) AS avg_income_6,
ROUND(AVG(income) OVER (
PARTITION BY company_id
ORDER BY dt
RANGE BETWEEN INTERVAL '11' MONTH PRECEDING
AND INTERVAL '0' MONTH FOLLOWING
), 2) AS avg_income_12
FROM table1
) t1
ON (t2.company_id = t1.company_id AND t2.dt = t1.dt);
Which, for the sample data:
CREATE TABLE table1 (company_id, dt, income) AS
SELECT 1, date '2019-01-01', 65 FROM DUAL UNION ALL
SELECT 1, date '2019-02-01', 58 FROM DUAL UNION ALL
SELECT 1, date '2019-03-01', 12 FROM DUAL UNION ALL
SELECT 1, date '2019-04-01', 81 FROM DUAL UNION ALL
SELECT 1, date '2019-05-01', 38 FROM DUAL UNION ALL
SELECT 1, date '2019-06-01', 81 FROM DUAL UNION ALL
SELECT 1, date '2019-07-01', 38 FROM DUAL UNION ALL
SELECT 1, date '2019-08-01', 69 FROM DUAL UNION ALL
SELECT 1, date '2019-09-01', 54 FROM DUAL UNION ALL
SELECT 1, date '2019-10-01', 90 FROM DUAL UNION ALL
SELECT 1, date '2019-11-01', 10 FROM DUAL UNION ALL
SELECT 1, date '2019-12-01', 12 FROM DUAL UNION ALL
SELECT 1, date '2020-01-01', 11 FROM DUAL UNION ALL
SELECT 1, date '2020-02-01', 83 FROM DUAL UNION ALL
SELECT 1, date '2020-03-01', 18 FROM DUAL UNION ALL
SELECT 1, date '2020-04-01', 28 FROM DUAL UNION ALL
SELECT 1, date '2020-05-01', 52 FROM DUAL UNION ALL
SELECT 1, date '2020-06-01', 21 FROM DUAL UNION ALL
SELECT 1, date '2020-07-01', 54 FROM DUAL UNION ALL
SELECT 1, date '2020-08-01', 30 FROM DUAL UNION ALL
SELECT 1, date '2020-09-01', 12 FROM DUAL UNION ALL
SELECT 1, date '2020-10-01', 25 FROM DUAL UNION ALL
SELECT 1, date '2020-11-01', 86 FROM DUAL UNION ALL
SELECT 1, date '2020-12-01', 4 FROM DUAL UNION ALL
SELECT 1, date '2021-01-01', 10 FROM DUAL UNION ALL
SELECT 1, date '2021-02-01', 72 FROM DUAL UNION ALL
SELECT 1, date '2021-03-01', 65 FROM DUAL UNION ALL
SELECT 1, date '2021-04-01', 25 FROM DUAL;
CREATE TABLE table2 (company_id, dt) AS
SELECT 1, date '2019-06-01' FROM DUAL UNION ALL
SELECT 1, date '2019-09-01' FROM DUAL UNION ALL
SELECT 1, date '2019-12-01' FROM DUAL UNION ALL
SELECT 1, date '2020-01-01' FROM DUAL UNION ALL
SELECT 1, date '2020-07-01' FROM DUAL UNION ALL
SELECT 1, date '2020-08-01' FROM DUAL UNION ALL
SELECT 1, date '2021-03-01' FROM DUAL UNION ALL
SELECT 1, date '2021-04-01' FROM DUAL;
Outputs:
COMPANY_ID
DT
AVG_INCOME_6
AVG_INCOME_12
1
2019-06-01 00:00:00
55.83
55.83
1
2019-09-01 00:00:00
60.17
55.11
1
2019-12-01 00:00:00
45.5
50.67
1
2020-01-01 00:00:00
41
46.17
1
2020-07-01 00:00:00
42.67
41.83
1
2020-08-01 00:00:00
33.83
38.58
1
2021-03-01 00:00:00
43.67
38.25
1
2021-04-01 00:00:00
43.67
38
db<>fiddle here
I don't think you need any window function here (if you were thinking of analytic functions); ordinary avg with appropriate join conditions should do the job.
Sample data:
SQL> with
2 table1 (company_id, datum, income) as
3 (select 1, date '2019-01-01', 65 from dual union all
4 select 1, date '2019-02-01', 58 from dual union all
5 select 1, date '2019-03-01', 12 from dual union all
6 select 1, date '2019-04-01', 81 from dual union all
7 select 1, date '2019-05-01', 38 from dual union all
8 select 1, date '2019-06-01', 81 from dual union all
9 select 1, date '2019-07-01', 38 from dual union all
10 select 1, date '2019-08-01', 69 from dual union all
11 select 1, date '2019-09-01', 54 from dual union all
12 select 1, date '2019-10-01', 90 from dual union all
13 select 1, date '2019-11-01', 10 from dual union all
14 select 1, date '2019-12-01', 12 from dual
15 ),
16 table2 (company_id, datum) as
17 (select 1, date '2019-06-01' from dual union all
18 select 1, date '2019-09-01' from dual union all
19 select 1, date '2019-12-01' from dual union all
20 select 1, date '2020-01-01' from dual union all
21 select 1, date '2020-07-01' from dual
22 )
Query begins here:
23 select b.company_id,
24 b.datum ,
25 round(avg(a.income), 2) result
26 from table1 a join table2 b on a.company_id = b.company_id
27 and a.datum > add_months(b.datum, -6)
28 and a.datum <= b.datum
29 group by b.company_id, b.datum;
COMPANY_ID DATUM RESULT
---------- -------- ----------
1 01.06.19 55,83
1 01.09.19 60,17
1 01.12.19 45,5
1 01.01.20 47
SQL>
I have the table A
Item Date
a 01-01-2000
a 10-05-2000
a 12-02-2000
b 01-01-2000
b 01-31-2000
b 02-01-2000
c 01-01-2000
i want this output, the closest previous date of the given row for the same item
Item Date closest_day
a 01-01-2000 null
a 10-05-2000 01-01-2000
a 12-02-2000 10-05-2000
b 01-01-2000 null
b 01-31-2000 null
b 02-01-2000 01-31-2000
c 01-01-2000 null
try this
with t as(
select 'a' c,to_date('01.01.2000','mm.dd.yyyy') d from dual
union all
select 'a' ,to_date('10.05.2000','mm.dd.yyyy') from dual
union all
select 'a' ,to_date('12.02.2000','mm.dd.yyyy') from dual
union all
select 'b' ,to_date('01.01.2000','mm.dd.yyyy') from dual
union all
select 'b' ,to_date('01.31.2000','mm.dd.yyyy') from dual
union all
select 'b' ,to_date('02.01.2000','mm.dd.yyyy') from dual
union all
select 'c' ,to_date('01.01.2000','mm.dd.yyyy') from dual
)
select t.c,t.d,LAG (t.d) over ( partition by t.c order by t.d ) from t
closest date must be in a different month?
ok
with t as(
select 'a' c,to_date('01.01.2000','mm.dd.yyyy') d from dual
union all
select 'a' ,to_date('10.05.2000','mm.dd.yyyy') from dual
union all
select 'a' ,to_date('12.02.2000','mm.dd.yyyy') from dual
union all
select 'b' ,to_date('01.01.2000','mm.dd.yyyy') from dual
union all
select 'b' ,to_date('01.31.2000','mm.dd.yyyy') from dual
union all
select 'b' ,to_date('02.01.2000','mm.dd.yyyy') from dual
union all
select 'c' ,to_date('01.01.2000','mm.dd.yyyy') from dual
)
select c,d,case when trunc(d,'Month')<>trunc(closest_d,'Month') then closest_d else null end closest_d from(
select t.c,t.d,LAG (t.d) over ( partition by t.c order by t.d ) closest_d from t
)
You can use a self-left join containing inequality among dates within the join condition :
with t2 as
(
select t1.Item,t1."Date" as t1_Date, t2."Date" as t2_Date
from t t1
left join t t2 on t1."Date">t2."Date" and t1.Item = t2.Item
)
select Item, t1_Date as "Date", max(t2_Date) as "Closest Day"
from t2
group by Item, t1_Date
order by Item, t1_Date
Demo
From the question title:
How can I get the date with the closest previous month from a given row date in a partition?
This is specifically addressing the fact that the previous value should be in a "previous" month and not in the same month as the row's date as per the expected results in Edits 1 through Edit 3.
Oracle Setup:
CREATE TABLE test_data ( item, "date" ) AS
SELECT 'A', DATE '2000-01-01' FROM DUAL UNION ALL
SELECT 'A', DATE '2000-10-05' FROM DUAL UNION ALL
SELECT 'A', DATE '2000-12-02' FROM DUAL UNION ALL
SELECT 'B', DATE '2000-01-01' FROM DUAL UNION ALL
SELECT 'B', DATE '2000-01-31' FROM DUAL UNION ALL
SELECT 'B', DATE '2000-02-01' FROM DUAL UNION ALL
SELECT 'C', DATE '2000-01-01' FROM DUAL;
Query:
SELECT t.*,
( SELECT MAX( "date" )
FROM test_data p
WHERE p.item = t.item
AND p."date" < TRUNC( t."date", 'MM' )
) AS prev_date
FROM test_data t
Output:
ITEM | date | PREV_DATE
:--- | :------------------ | :------------------
A | 2000-01-01 00:00:00 | null
A | 2000-10-05 00:00:00 | 2000-01-01 00:00:00
A | 2000-12-02 00:00:00 | 2000-10-05 00:00:00
B | 2000-01-01 00:00:00 | null
B | 2000-01-31 00:00:00 | null
B | 2000-02-01 00:00:00 | 2000-01-31 00:00:00
C | 2000-01-01 00:00:00 | null
db<>fiddle here
You can do this with window functions -- if I assume that you want the most recent date before the current month for each row. This uses the range window definition:
SELECT t.*,
MAX("date") OVER (PARTITION BY item
ORDER BY TRUNC(t."date", 'MON')
RANGE BETWEEN UNBOUNDED PRECEDING AND INTERVAL '1' MONTH PRECEDING
) AS prev_date
FROM test_data t;
Here is a db<>fiddle.
If you specifically want the result from the previous calendar month, then:
SELECT t.*,
MAX("date") OVER (PARTITION BY item
ORDER BY TRUNC(t."date", 'MON')
RANGE BETWEEN INTERVAL '1' MONTH PRECEDING AND INTERVAL '1' MONTH PRECEDING
) AS prev_date
FROM test_data t;
I have a table as follows:
Sn no. t_time Value rate
ABC 17-MAY-18 08:00:00 100.00 3
ABC 17-MAY-18 22:00:00 200.00 1
ABC 16-MAY-18 08:00:00 100.00 1
XYZ 14-MAY-18 01:00:00 700.00 1
XYZ 15-MAY-18 10:00:00 500.00 2
XYZ 15-MAY-18 13:00:00 100.00 2
And I want to generate the output as follows:
Sn no. New_value
ABC 150
XYZ 450
It is grouped by the Sn no. The New_value is the latest time of each date value multiplied by rate, and then averaged together.
For example ABC new_value is
Average of:[(100*1) and (200*1)]
Its a large dataset. How do I write a query for the above in the most efficient way. Please help.
You can use analytical function(row_number()) to achieve the result
SQL> WITH cte_table(Snno, t_time, Value, rate) AS (
2 SELECT 'ABC', to_date('2018-05-17 08:00:00', 'YYYY-MM-DD HH24:MI:SS'), 100.00, 3 FROM DUAL UNION ALL
3 SELECT 'ABC', to_date('2018-05-17 22:00:00', 'YYYY-MM-DD HH24:MI:SS'), 200.00, 1 FROM DUAL UNION ALL
4 SELECT 'ABC', to_date('2018-05-16 08:00:00', 'YYYY-MM-DD HH24:MI:SS'), 100.00, 1 FROM DUAL UNION ALL
5 SELECT 'XYZ', to_date('2018-05-14 01:00:00', 'YYYY-MM-DD HH24:MI:SS'), 700.00, 1 FROM DUAL UNION ALL
6 SELECT 'XYZ', to_date('2018-05-15 10:00:00', 'YYYY-MM-DD HH24:MI:SS'), 500.00, 2 FROM DUAL UNION ALL
7 SELECT 'XYZ', to_date('2018-05-15 13:00:00', 'YYYY-MM-DD HH24:MI:SS'), 100.00, 2 FROM DUAL),
8 --------------------------------
9 -- End of data preparation
10 --------------------------------
11 rn_table AS (
12 SELECT t.*, row_number() OVER (PARTITION BY TRUNC(t_time) ORDER BY t_time DESC) AS rn
13 FROM cte_table t)
14 SELECT snno,
15 AVG(VALUE * rate) new_value
16 FROM rn_table
17 WHERE rn = 1
18 GROUP BY snno;
Output:
SNNO NEW_VALUE
---- ----------
ABC 150
XYZ 450
Use the ROW_NUMBER (or RANK/DENSE_RANK if it is more appropriate) analytic function in a sub-query and then aggregate in the outer query:
SQL Fiddle
Oracle 11g R2 Schema Setup:
CREATE TABLE table_name ( Snno, t_time, Value, rate ) AS
SELECT 'ABC', TIMESTAMP '2018-05-17 08:00:00', 100.00, 3 FROM DUAL UNION ALL
SELECT 'ABC', TIMESTAMP '2018-05-17 22:00:00', 200.00, 1 FROM DUAL UNION ALL
SELECT 'ABC', TIMESTAMP '2018-05-16 08:00:00', 100.00, 1 FROM DUAL UNION ALL
SELECT 'XYZ', TIMESTAMP '2018-05-14 01:00:00', 700.00, 1 FROM DUAL UNION ALL
SELECT 'XYZ', TIMESTAMP '2018-05-15 10:00:00', 500.00, 2 FROM DUAL UNION ALL
SELECT 'XYZ', TIMESTAMP '2018-05-15 13:00:00', 100.00, 2 FROM DUAL;
Query 1:
SELECT snno,
AVG( value * rate ) As new_value
FROM (
SELECT t.*,
ROW_NUMBER() OVER (
PARTITION BY snno, value
ORDER BY t_time DESC
) AS rn
FROM table_name t
)
WHERE rn = 1
GROUP BY snno
Results:
| SNNO | NEW_VALUE |
|------|-------------------|
| ABC | 250 |
| XYZ | 633.3333333333334 |
The goal is to select the count of distinct customer_id's who have not made a purchase in the rolling 30 day period prior to every day in the calendar year 2016. I have created a calendar table in my database to join to.
Here is an example table for reference, let's say you have customers orders normalized as follows:
+-------------+------------+----------+
| customer_id | date | order_id |
+-------------+------------+----------+
| 123 | 01/25/2016 | 1000 |
+-------------+------------+----------+
| 123 | 04/27/2016 | 1025 |
+-------------+------------+----------+
| 444 | 02/02/2016 | 1010 |
+-------------+------------+----------+
| 521 | 01/23/2016 | 998 |
+-------------+------------+----------+
| 521 | 01/24/2016 | 999 |
+-------------+------------+----------+
The goal output is effectively a calendar with 1 row for every single day of 2016 with a count on each day of how many customers "lapsed" on that day, meaning their last purchase was 30 days or more prior from that day of the year. The final output will look like this:
+------------+--------------+
| date | lapsed_count |
+------------+--------------+
| 01/01/2016 | 0 |
+------------+--------------+
| 01/02/2016 | 0 |
+------------+--------------+
| ... | ... |
+------------+--------------+
| 03/01/2016 | 12 |
+------------+--------------+
| 03/02/2016 | 9 |
+------------+--------------+
| 03/03/2016 | 7 |
+------------+--------------+
This data does not exist in 2015, therefore it's not possible for Jan-01-2016 to have a count of lapsed customers because that is the first possible day to ever make a purchase.
So for customer_id #123, they purchased on 01/25/2016 and 04/27/2016. They should have 2 lapse counts because their purchases are more than 30 days apart. One lapse occurring on 2/24/2016 and another lapse on 05/27/2016.
Customer_id#444 only purchased once, so they should have one lapse count for 30 days after 02/02/2016 on 03/02/2016.
Customer_id#521 is tricky, since they purchased with a frequency of 1 day we will not count the first purchase on 03/02/2016, so there is only one lapse starting from their last purchase of 03/03/2016. The count for the lapse will occur on 04/02/2016 (+30 days).
If you have a table of dates, here is one expensive method:
select date,
sum(case when prev_date < date - 30 then 1 else 0 end) as lapsed
from (select c.date, o.customer_id, max(o.date) as prev_date
from calendar c cross join
(select distinct customer_id from orders) c left join
orders o
on o.date <= c.date and o.customer_id = c.customer_id
group by c.date, o.customer_id
) oc
group by date;
For each date/customer pair, it determines the latest purchase the customer made before the date. It then uses this information to count the lapsed.
To be honest, this will probably work well on a handful of dates, but not for a full year's worth.
Apologies, I didn't read your question properly the first time around. This query will give you all the lapses you have. It takes each order and uses an analytic function to work out the next order date - if the gap is greater than 30 days then a lapse is recorded
WITH
cust_orders (customer_id , order_date , order_id )
AS
(SELECT 1, TO_DATE('01/01/2016','DD/MM/YYYY'), 1001 FROM dual UNION ALL
SELECT 1, TO_DATE('29/01/2016','DD/MM/YYYY'), 1002 FROM dual UNION ALL
SELECT 1, TO_DATE('01/03/2016','DD/MM/YYYY'), 1003 FROM dual UNION ALL
SELECT 2, TO_DATE('01/01/2016','DD/MM/YYYY'), 1004 FROM dual UNION ALL
SELECT 2, TO_DATE('29/01/2016','DD/MM/YYYY'), 1005 FROM dual UNION ALL
SELECT 2, TO_DATE('01/04/2016','DD/MM/YYYY'), 1006 FROM dual UNION ALL
SELECT 2, TO_DATE('01/06/2016','DD/MM/YYYY'), 1007 FROM dual UNION ALL
SELECT 2, TO_DATE('01/08/2016','DD/MM/YYYY'), 1008 FROM dual UNION ALL
SELECT 3, TO_DATE('01/09/2016','DD/MM/YYYY'), 1009 FROM dual UNION ALL
SELECT 3, TO_DATE('01/12/2016','DD/MM/YYYY'), 1010 FROM dual UNION ALL
SELECT 3, TO_DATE('02/12/2016','DD/MM/YYYY'), 1011 FROM dual UNION ALL
SELECT 3, TO_DATE('03/12/2016','DD/MM/YYYY'), 1012 FROM dual UNION ALL
SELECT 3, TO_DATE('04/12/2016','DD/MM/YYYY'), 1013 FROM dual UNION ALL
SELECT 3, TO_DATE('05/12/2016','DD/MM/YYYY'), 1014 FROM dual UNION ALL
SELECT 3, TO_DATE('06/12/2016','DD/MM/YYYY'), 1015 FROM dual UNION ALL
SELECT 3, TO_DATE('07/12/2016','DD/MM/YYYY'), 1016 FROM dual
)
SELECT
customer_id
,order_date
,order_id
,next_order_date
,order_date + 30 lapse_date
FROM
(SELECT
customer_id
,order_date
,order_id
,LEAD(order_date) OVER (PARTITION BY customer_id ORDER BY order_date) next_order_date
FROM
cust_orders
)
WHERE NVL(next_order_date,sysdate) - order_date > 30
;
Now join that to a set of dates and run a COUNT function (enter the year parameter as YYYY) :
WITH
cust_orders (customer_id , order_date , order_id )
AS
(SELECT 1, TO_DATE('01/01/2016','DD/MM/YYYY'), 1001 FROM dual UNION ALL
SELECT 1, TO_DATE('29/01/2016','DD/MM/YYYY'), 1002 FROM dual UNION ALL
SELECT 1, TO_DATE('01/03/2016','DD/MM/YYYY'), 1003 FROM dual UNION ALL
SELECT 2, TO_DATE('01/01/2016','DD/MM/YYYY'), 1004 FROM dual UNION ALL
SELECT 2, TO_DATE('29/01/2016','DD/MM/YYYY'), 1005 FROM dual UNION ALL
SELECT 2, TO_DATE('01/04/2016','DD/MM/YYYY'), 1006 FROM dual UNION ALL
SELECT 2, TO_DATE('01/06/2016','DD/MM/YYYY'), 1007 FROM dual UNION ALL
SELECT 2, TO_DATE('01/08/2016','DD/MM/YYYY'), 1008 FROM dual UNION ALL
SELECT 3, TO_DATE('01/09/2016','DD/MM/YYYY'), 1009 FROM dual UNION ALL
SELECT 3, TO_DATE('01/12/2016','DD/MM/YYYY'), 1010 FROM dual UNION ALL
SELECT 3, TO_DATE('02/12/2016','DD/MM/YYYY'), 1011 FROM dual UNION ALL
SELECT 3, TO_DATE('03/12/2016','DD/MM/YYYY'), 1012 FROM dual UNION ALL
SELECT 3, TO_DATE('04/12/2016','DD/MM/YYYY'), 1013 FROM dual UNION ALL
SELECT 3, TO_DATE('05/12/2016','DD/MM/YYYY'), 1014 FROM dual UNION ALL
SELECT 3, TO_DATE('06/12/2016','DD/MM/YYYY'), 1015 FROM dual UNION ALL
SELECT 3, TO_DATE('07/12/2016','DD/MM/YYYY'), 1016 FROM dual
)
,calendar (date_value)
AS
(SELECT TO_DATE('01/01/'||:P_year,'DD/MM/YYYY') + (rownum -1)
FROM all_tables
WHERE rownum < (TO_DATE('31/12/'||:P_year,'DD/MM/YYYY') - TO_DATE('01/01/'||:P_year,'DD/MM/YYYY')) + 2
)
SELECT
calendar.date_value
,COUNT(*)
FROM
(
SELECT
customer_id
,order_date
,order_id
,next_order_date
,order_date + 30 lapse_date
FROM
(SELECT
customer_id
,order_date
,order_id
,LEAD(order_date) OVER (PARTITION BY customer_id ORDER BY order_date) next_order_date
FROM
cust_orders
)
WHERE NVL(next_order_date,sysdate) - order_date > 30
) lapses
,calendar
WHERE 1=1
AND calendar.date_value = TRUNC(lapses.lapse_date)
GROUP BY
calendar.date_value
;
Or if you really want every date printed out then use this :
WITH
cust_orders (customer_id , order_date , order_id )
AS
(SELECT 1, TO_DATE('01/01/2016','DD/MM/YYYY'), 1001 FROM dual UNION ALL
SELECT 1, TO_DATE('29/01/2016','DD/MM/YYYY'), 1002 FROM dual UNION ALL
SELECT 1, TO_DATE('01/03/2016','DD/MM/YYYY'), 1003 FROM dual UNION ALL
SELECT 2, TO_DATE('01/01/2016','DD/MM/YYYY'), 1004 FROM dual UNION ALL
SELECT 2, TO_DATE('29/01/2016','DD/MM/YYYY'), 1005 FROM dual UNION ALL
SELECT 2, TO_DATE('01/04/2016','DD/MM/YYYY'), 1006 FROM dual UNION ALL
SELECT 2, TO_DATE('01/06/2016','DD/MM/YYYY'), 1007 FROM dual UNION ALL
SELECT 2, TO_DATE('01/08/2016','DD/MM/YYYY'), 1008 FROM dual UNION ALL
SELECT 3, TO_DATE('01/09/2016','DD/MM/YYYY'), 1009 FROM dual UNION ALL
SELECT 3, TO_DATE('01/12/2016','DD/MM/YYYY'), 1010 FROM dual UNION ALL
SELECT 3, TO_DATE('02/12/2016','DD/MM/YYYY'), 1011 FROM dual UNION ALL
SELECT 3, TO_DATE('03/12/2016','DD/MM/YYYY'), 1012 FROM dual UNION ALL
SELECT 3, TO_DATE('04/12/2016','DD/MM/YYYY'), 1013 FROM dual UNION ALL
SELECT 3, TO_DATE('05/12/2016','DD/MM/YYYY'), 1014 FROM dual UNION ALL
SELECT 3, TO_DATE('06/12/2016','DD/MM/YYYY'), 1015 FROM dual UNION ALL
SELECT 3, TO_DATE('07/12/2016','DD/MM/YYYY'), 1016 FROM dual
)
,lapses
AS
(SELECT
customer_id
,order_date
,order_id
,next_order_date
,order_date + 30 lapse_date
FROM
(SELECT
customer_id
,order_date
,order_id
,LEAD(order_date) OVER (PARTITION BY customer_id ORDER BY order_date) next_order_date
FROM
cust_orders
)
WHERE NVL(next_order_date,sysdate) - order_date > 30
)
,calendar (date_value)
AS
(SELECT TO_DATE('01/01/'||:P_year,'DD/MM/YYYY') + (rownum -1)
FROM all_tables
WHERE rownum < (TO_DATE('31/12/'||:P_year,'DD/MM/YYYY') - TO_DATE('01/01/'||:P_year,'DD/MM/YYYY')) + 2
)
SELECT
calendar.date_value
,(SELECT COUNT(*)
FROM lapses
WHERE calendar.date_value = lapses.lapse_date
)
FROM
calendar
WHERE 1=1
ORDER BY
calendar.date_value
;
Here's how I'd do it:
WITH your_table AS (SELECT 123 customer_id, to_date('24/01/2016', 'dd/mm/yyyy') order_date, 12345 order_id FROM dual UNION ALL
SELECT 123 customer_id, to_date('24/01/2016', 'dd/mm/yyyy') order_date, 12346 order_id FROM dual UNION ALL
SELECT 123 customer_id, to_date('25/01/2016', 'dd/mm/yyyy') order_date, 12347 order_id FROM dual UNION ALL
SELECT 123 customer_id, to_date('24/02/2016', 'dd/mm/yyyy') order_date, 12347 order_id FROM dual UNION ALL
SELECT 123 customer_id, to_date('16/03/2016', 'dd/mm/yyyy') order_date, 12348 order_id FROM dual UNION ALL
SELECT 123 customer_id, to_date('18/04/2016', 'dd/mm/yyyy') order_date, 12349 order_id FROM dual UNION ALL
SELECT 456 customer_id, to_date('20/02/2016', 'dd/mm/yyyy') order_date, 12350 order_id FROM dual UNION ALL
SELECT 456 customer_id, to_date('01/03/2016', 'dd/mm/yyyy') order_date, 12351 order_id FROM dual UNION ALL
SELECT 456 customer_id, to_date('03/03/2016', 'dd/mm/yyyy') order_date, 12352 order_id FROM dual UNION ALL
SELECT 456 customer_id, to_date('18/04/2016', 'dd/mm/yyyy') order_date, 12353 order_id FROM dual UNION ALL
SELECT 456 customer_id, to_date('20/05/2016', 'dd/mm/yyyy') order_date, 12354 order_id FROM dual UNION ALL
SELECT 456 customer_id, to_date('23/06/2016', 'dd/mm/yyyy') order_date, 12355 order_id FROM dual UNION ALL
SELECT 456 customer_id, to_date('19/01/2017', 'dd/mm/yyyy') order_date, 12356 order_id FROM dual),
-- end of mimicking your_table with data in it
lapsed_info AS (SELECT customer_id,
order_date,
CASE WHEN TRUNC(SYSDATE) - order_date <= 30 THEN NULL
WHEN COUNT(*) OVER (PARTITION BY customer_id ORDER BY order_date RANGE BETWEEN 1 FOLLOWING AND 30 FOLLOWING) = 0 THEN order_date+30
ELSE NULL
END lapsed_date
FROM your_table),
dates AS (SELECT to_date('01/01/2016', 'dd/mm/yyyy') + LEVEL -1 dt
FROM dual
CONNECT BY to_date('01/01/2016', 'dd/mm/yyyy') + LEVEL -1 <= TRUNC(SYSDATE))
SELECT dates.dt,
COUNT(li.lapsed_date) lapsed_count
FROM dates
LEFT OUTER JOIN lapsed_info li ON dates.dt = li.lapsed_date
GROUP BY dates.dt
ORDER BY dates.dt;
Results:
DT LAPSED_COUNT
---------- ------------
01/01/2016 0
<snip>
23/01/2016 0
24/01/2016 0
25/01/2016 0
26/01/2016 0
<snip>
19/02/2016 0
20/02/2016 0
21/02/2016 0
22/02/2016 0
23/02/2016 0
24/02/2016 1
25/02/2016 0
<snip>
29/02/2016 0
01/03/2016 0
02/03/2016 0
03/03/2016 0
04/03/2016 0
<snip>
15/03/2016 0
16/03/2016 0
17/03/2016 0
<snip>
20/03/2016 0
21/03/2016 0
22/03/2016 0
<snip>
30/03/2016 0
31/03/2016 0
01/04/2016 0
02/04/2016 1
03/04/2016 0
<snip>
14/04/2016 0
15/04/2016 1
16/04/2016 0
17/04/2016 0
18/04/2016 0
19/04/2016 0
<snip>
17/05/2016 0
18/05/2016 2
19/05/2016 0
20/05/2016 0
21/05/2016 0
<snip>
18/06/2016 0
19/06/2016 1
20/06/2016 0
21/06/2016 0
22/06/2016 0
23/06/2016 0
24/06/2016 0
<snip>
22/07/2016 0
23/07/2016 1
24/07/2016 0
<snip>
18/01/2017 0
19/01/2017 0
20/01/2017 0
<snip>
08/02/2017 0
This takes your data, and uses an the analytic count function to work out the number of rows that have a value within 30 days of (but excluding) the current row's date.
Then we apply a case expression to determine that if the row has a date within 30 days of today's date, we'll count those as not lapsed. If a count of 0 was returned, then the row is considered lapsed and we'll output the lapsed date as the order_date plus 30 days. Any other count result means the row has not lapsed.
The above is all worked out in the lapsed_info subquery.
Then all we need to do is list the dates (see the dates subquery) and outer join the lapsed_info subquery to it based on the lapsed_date and then do a count of the lapsed dates for each day.
I have following values in a column of table. there are two columns in table. The other column is having distinct dates in descending order.
3
4
3
21
4
4
-1
3
21
-1
4
4
8
3
3
-1
21
-1
4
The graph will be
I need only peaks higlighted in graph with circles in output
4
21
21
8
21
4
SQL Fiddle
Oracle 11g R2 Schema Setup:
CREATE TABLE TEST ( datetime, value ) AS
SELECT DATE '2015-01-01', 3 FROM DUAL
UNION ALL SELECT DATE '2015-01-02', 4 FROM DUAL
UNION ALL SELECT DATE '2015-01-03', 3 FROM DUAL
UNION ALL SELECT DATE '2015-01-04', 21 FROM DUAL
UNION ALL SELECT DATE '2015-01-05', 4 FROM DUAL
UNION ALL SELECT DATE '2015-01-06', 4 FROM DUAL
UNION ALL SELECT DATE '2015-01-07', -1 FROM DUAL
UNION ALL SELECT DATE '2015-01-08', 3 FROM DUAL
UNION ALL SELECT DATE '2015-01-09', 21 FROM DUAL
UNION ALL SELECT DATE '2015-01-10', -1 FROM DUAL
UNION ALL SELECT DATE '2015-01-11', 4 FROM DUAL
UNION ALL SELECT DATE '2015-01-12', 4 FROM DUAL
UNION ALL SELECT DATE '2015-01-13', 8 FROM DUAL
UNION ALL SELECT DATE '2015-01-14', 3 FROM DUAL
UNION ALL SELECT DATE '2015-01-15', 3 FROM DUAL
UNION ALL SELECT DATE '2015-01-16', -1 FROM DUAL
UNION ALL SELECT DATE '2015-01-17', 21 FROM DUAL
UNION ALL SELECT DATE '2015-01-18', -1 FROM DUAL
UNION ALL SELECT DATE '2015-01-19', 4 FROM DUAL
Query 1:
SELECT datetime, value
FROM (
SELECT datetime,
LAG( value ) OVER ( ORDER BY datetime ) AS prv,
value,
LEAD( value ) OVER ( ORDER BY datetime ) AS nxt
FROM test
)
WHERE ( prv IS NULL OR prv < value )
AND ( nxt IS NULL OR nxt < value )
Results:
| DATETIME | VALUE |
|---------------------------|-------|
| January, 02 2015 00:00:00 | 4 |
| January, 04 2015 00:00:00 | 21 |
| January, 09 2015 00:00:00 | 21 |
| January, 13 2015 00:00:00 | 8 |
| January, 17 2015 00:00:00 | 21 |
| January, 19 2015 00:00:00 | 4 |
So the peak is defined as the previous value and next value being less than the current value, and you can retrieve the previous an next using LAG() and LEAD() functions.
You really need some other column (e.g. my_date) to define the order of the rows, then you can:
select my_date,
value
from (select value,
lag(value ) over (order by my_date) lag_value,
lead(value) over (order by my_date) lead_value
from my_table)
where value > coalesce(lag_value , value - 1) and
value > coalesce(lead_value, value - 1);
This would not allow for a "double-peak" such as:
1,
15,
15,
4
... for which much more complex logic would be needed.
Just for completeness the row pattern matching example:
WITH source_data(datetime, value) AS (
SELECT DATE '2015-01-01', 3 FROM DUAL UNION ALL
SELECT DATE '2015-01-02', 4 FROM DUAL UNION ALL
SELECT DATE '2015-01-03', 3 FROM DUAL UNION ALL
SELECT DATE '2015-01-04', 21 FROM DUAL UNION ALL
SELECT DATE '2015-01-05', 4 FROM DUAL UNION ALL
SELECT DATE '2015-01-06', 4 FROM DUAL UNION ALL
SELECT DATE '2015-01-07', -1 FROM DUAL UNION ALL
SELECT DATE '2015-01-08', 3 FROM DUAL UNION ALL
SELECT DATE '2015-01-09', 21 FROM DUAL UNION ALL
SELECT DATE '2015-01-10', -1 FROM DUAL UNION ALL
SELECT DATE '2015-01-11', 4 FROM DUAL UNION ALL
SELECT DATE '2015-01-12', 4 FROM DUAL UNION ALL
SELECT DATE '2015-01-13', 8 FROM DUAL UNION ALL
SELECT DATE '2015-01-14', 3 FROM DUAL UNION ALL
SELECT DATE '2015-01-15', 3 FROM DUAL UNION ALL
SELECT DATE '2015-01-16', -1 FROM DUAL UNION ALL
SELECT DATE '2015-01-17', 21 FROM DUAL UNION ALL
SELECT DATE '2015-01-18', -1 FROM DUAL UNION ALL
SELECT DATE '2015-01-19', 4 FROM DUAL
)
SELECT *
FROM
source_data MATCH_RECOGNIZE (
ORDER BY datetime
MEASURES
LAST(UP.datetime) AS datetime,
LAST(UP.value) AS value
ONE ROW PER MATCH
PATTERN ((UP DOWN) | UP$)
DEFINE
DOWN AS DOWN.value < PREV(DOWN.value),
UP AS UP.value > PREV(UP.value)
)
ORDER BY
datetime
There is a much more sophisticated method available in Oracle 12c, which is to use pattern matching SQL.
http://docs.oracle.com/database/121/DWHSG/pattern.htm#DWHSG8966
It would be overkill for a situation like this, but if you needed more complex patterns matched, such as W shaped patterns, then it would be worth investigating.
Using LAG function you can compare values from different rows. I assume the resultset you showed is ordered by another column named position.
select value
from
(select value,
lag(value,-1) over (order by position) prev,
lag(value,1) over (order by position) next
from table)
where value > prev
and value > next