Any Logic Freezes after 36 replications - freeze

I'm running a stochastic experiment and would therefore like to do N=500 (or some reasonably large N) replications of the simulation before collecting averaged results.
I've set up a Monte Carlo experiment to do this, and because I was told AnyLogic doesn't naturally average outputs over replications, I cumulatively add the output of each experiment and then once all experiments are finished I divide by the number of replications I ran. I don't store the outputs of each experiment just the cumulative value.
My problem is that the experiment seems to freeze after 36 replications and I'm not sure why this might happen. Note that Each replication takes around 5 seconds to run (and they are not taking progressively longer each time).
Has anyone else experienced something like this/can anyone suggest a way to diagnose the problem?

Yes, had it many times. Two options:
too little memory: increase the experiment memory
It is a fault in your model, has nothing to do with AnyLogic :) . You need to do some investigations yourself, probably some special infinite loop triggered in that iteration.

Related

Recommended way of measuring execution time in Tensorflow Federated

I would like to know whether there is a recommended way of measuring execution time in Tensorflow Federated. To be more specific, if one would like to extract the execution time for each client in a certain round, e.g., for each client involved in a FedAvg round, saving the time stamp before the local training starts and the time stamp just before sending back the updates, what is the best (or just correct) strategy to do this? Furthermore, since the clients' code run in parallel, are such a time stamps untruthful (especially considering the hypothesis that different clients may be using differently sized models for local training)?
To be very practical, using tf.timestamp() at the beginning and at the end of #tf.function client_update(model, dataset, server_message, client_optimizer) -- this is probably a simplified signature -- and then subtracting such time stamps is appropriate?
I have the feeling that this is not the right way to do this given that clients run in parallel on the same machine.
Thanks to anyone can help me on that.
There are multiple potential places to measure execution time, first might be defining very specifically what is the intended measurement.
Measuring the training time of each client as proposed is a great way to get a sense of the variability among clients. This could help identify whether rounds frequently have stragglers. Using tf.timestamp() at the beginning and end of the client_update function seems reasonable. The question correctly notes that this happens in parallel, summing all of these times would be akin to CPU time.
Measuring the time it takes to complete all client training in a round would generally be the maximum of the values above. This might not be true when simulating FL in TFF, as TFF maybe decided to run some number of clients sequentially due to system resources constraints. In practice all of these clients would run in parallel.
Measuring the time it takes to complete a full round (the maximum time it takes to run a client, plus the time it takes for the server to update) could be done by moving the tf.timestamp calls to the outer training loop. This would be wrapping the call to trainer.next() in the snippet on https://www.tensorflow.org/federated. This would be most similar to elapsed real time (wall clock time).

Is faster code also more power efficient?

Assume I have a CPU running at a constant rate, pulling an equal amount of energy per instruction. I also have two functionally identical programs, which result in the same output, except one has been optimized to execute only 100 instructions, while the other program executes 200 instructions. Is the 100 instruction program necessarily faster than the 200 instruction program? Does a program with fewer instructions draw less power than a program with more instructions?
Things are much more complex than this.
For example execution speed is in many cases dominated by memory. As a practical example some code could process the pixels of an image first in rows and then in columns... a different code instead could be more complex but processing rows and columns at the same time.
The second version could execute more instructions because of more complex housekeeping of the data but I wouldn't be surprised if it was faster because of how memory is organized: reading an image one column at a time is going to "trash the cache" and it's very possible that despite being simple the code working that way could be a LOT slower than the more complex one doing the processing in a memory-friendly way. The simpler code may end up being "stalled" a lot waiting for the cache lines to be filled or flushed to the external memory.
This is just an example, but in reality what happens inside a CPU when code is executed is for many powerful processors today a very very complex process: instructions are exploded in micro-instructions, registers are renamed, there is speculative execution of parts of code depending on what branch predictors guess even before the program counter really reaches a certain instruction and so on. Today the only way to know for sure if something is faster or slower is in many cases just trying with real data and measure.
Is the 100 instruction program necessarily faster than the 200 instruction program?
No. Firstly, on some architectures (such as x86) different instructions can take a different number of cycles. Secondly, there are effects — such cache misses, page faults and branch mispreditictions — that complicate the picture further.
From this it follows that the answer to your headline question is "not necessarily".
Further reading.
I found a paper from 2017 comparing the energy usage, speed, and memory consumption of various programming languages. There is an obvious positive correlation between faster languages also using less energy.

what is a "convolution warmup"?

i encountered this phrase few times before, mostly in the context of neural networks and tensorflow, but i get the impression its something more general and not restricted to these environments.
here for example, they say that this "convolution warmup" process takes about 10k iterations.
why do convolutions need to warmup? what prevents them from reaching their top speed right away?
one thing that i can think of is memory allocation. if so, i would expect that it would be solved after 1 (or at least <10) iteration. why 10k?
edit for clarification: i understand that the warmup is a time period or number of iterations that have to be done until the convolution operator reaches its top speed (time per operator).
what i ask is - why is it needed and what happens during this time that makes the convolution faster?
Training neural networks works by offering training data, calculating the output error, and backpropagating the error back to the individual connections. For symmetry breaking, the training doesn't start with all zeros, but by random connection strengths.
It turns out that with the random initialization, the first training iterations aren't really effective. The network isn't anywhere near to the desired behavior, so the errors calculated are large. Backpropagating these large errors would lead to overshoot.
A warmup phase is intended to get the initial network away from a random network, and towards a first approximation of the desired network. Once the approximation has been achieved, the learning rate can be accelerated.
This is an empirical result. The number of iterations will depend on the complexity of your program domain, and therefore also with the complexity of the necessary network. Convolutional neural networks are fairly complex, so warmup is more important for them.
You are not alone to claiming the timer per iteration varies.
I run the same example and I get the same question.And I can say the main reason is the differnet input image shape and obeject number to detect.
I offer my test result to discuss it.
I enable trace and get the timeline at the first,then I found that Conv2D occurrences vary between steps in gpu stream all compulte,Then I use export TF_CUDNN_USE_AUTOTUNE=0 to disable autotune.
then there are same number of Conv2D in the timeline,and the time are about 0.4s .
the time cost are still different ,but much closer!

QueueDequeue step is a significant bottleneck in Tensorflow code

I've seen a few other questions regarding the dequeueing step causing a bottleneck but I have tried many of those suggestions without any success:
I am using multiple threads based on cpu count
I have tried with small batches (of 100) and larger batches (of 1000)
I have tried switching to the shuffle_batch_join and batch_join
None of these things seem to be helping the overall time. Also the extent to which the Dequeue step is causing a bottleneck in my code seems much worse than what others have experienced. When you look at the timeline all of the other steps practically disappear in comparison. I am wondering if this is partially from using BigQuery and the BigQueryReader as my source although with other people also experiencing a slowdown I am assuming it isn't the only cause.
I'm not entirely sure how to properly interpret this chart but it doesn't seem like the the problem is being caused by a completely empty queue.
Additional info
Capacity is set to batch size * 10
min after dequeue is set to batch size * 2 + 1
enqueue many is set to true
Does anyone have any thoughts on what else I might be able to try to speed things up while still using bigquery as the source of my data?

An example: Am I understanding GPU advantage correctly?

Just reading a bit about what the advantage of GPU is, and I want to verify I understand on a practical level. Lets say I have 10,000 arrays each containing a billion simple equations to run. On a cpu it would need to go through every single equation, 1 at a time, but with a GPU I could run all 10,000 arrays as as 10,000 different threads, all at the same time, so it would finish a ton faster...is this example spot on or have I misunderstood something?
I wouldn't call it spot on, but I think you're headed in the right direction. Mainly, a GPU is optimized for graphics-related calculations. This does not, however, mean that's all it is capable of.
Without knowing how much detail you want me to go into here, I can say at the very least the concept of running things in parallel is relevant. The GPU is very good at performing many tasks simultaneously in one go (known as running in parallel). CPUs can do this too, but the GPU is specifically optimized to handle much larger numbers of specific calculations with preset data.
For example, to render every pixel on your screen requires a calculation, and the GPU will attempt to do as many of these calculations as it can all at the same time. The more powerful the GPU, the more of these it can handle at once and the faster its clock speed. The end result is a higher-end GPU can run your OS and games in 4k resolution, whereas other cards (or integrated graphics) might only be able to handle 1080p or less.
There's a lot more to this as well, but I figured you weren't looking for the insanely technical explanation.
The bottom line is this: For running a single task on one piece of data, the CPU will normally be faster. A single CPU core is generally much faster than a single GPU core. However, they typically have many cores and for running a single task on many pieces of data (so you have to run it once for each), the GPU will usually be faster. But these are data-driven situations, and as such each situation should be assessed on an individual basis to determine which to use and how to use it.