In Java you can declare a private final member variable and then initialize it from your constructor, which is very useful and is a very common thing to do:
class MyClass {
private final int widgetCount;
public MyClass(int widgetCount) {
this.widgetCount = widgetCount;
}
In Kotlin how do you initialize final member variables (val types) with values passed in to a constructor?
It is as simple as the following:
class MyClass(private val widgetCount: Int)
This will generate a constructor accepting an Int as its single parameter, which is then assigned to the widgetCount property.
This will also generate no setter (because it is val) or getter (because it is private) for the widgetCount property.
As well as defining the val in the constructor params, you can use an init block to do some general setup, in case you need to do some work before assigning a value:
class MyClass(widgetCount: Int) {
private val widgetCount: Int
init {
this.widgetCount = widgetCount * 100
}
}
init blocks can use the parameters in the primary constructor, and any secondary constructors you have need to call the primary one at some point, so those init blocks will always be called and the primary params will always be there.
Best to read this whole thing really!
Constructors
class MyClass(private val widgetCount: Int)
That's it. If in Java you also have a trivial getter public int getWidgetCount() { return widgetCount; }, remove private.
See the documentation for more details (in particular, under "Kotlin has a concise syntax for declaring properties and initializing them from the primary constructor").
Related
I'm trying to use inline classes in Kotlin to create a class inlining the String class, such that if I have an instance of my class that it will always be true for the contained string that s == s.trim().
I was initially expecting there to be a straightforward way to do this, like perhaps:
#JvmInline
value class Trimmed private constructor(val str: String) : {
constructor(s : String) : super(s.trim())
}
but that doesn't work, and neither do the other direct approaches I considered ("this(s.trim())", etc.).
This problem has turned out to be surprisingly tricky:
Kotlin seems to provide no easy way to have the primary constructor filter or modify the data that is passed to the constructor of the contained String object.
Even if I make the primary constructor private, I can't declare another constructor with the same signature (taking a single String as a parameter).
If this were a normal (non-inlined) class, I could just set the value after superclass class construction (e.g. "init { str = str.trim() }", but since it's an inline class, I can't do that. ("this=this.trim()" doesn't work either, and String objects themselves are immutable so I can't change the contents of 'str'.)
I tried making the class constructor private and creating a factory function in the same file with the same name as the class, but then I couldn't call the class constructor from within the factory function due to access restrictions.
I then tried making the factory function within the class's companion object, but then Kotlin tried to make that function call itself recursively instead of calling the class's constructor. I wasn't able to find a way to syntactially disambiguate this. I managed to work around this by creating a file-private typealias to give another name for the class so I could call the constructor from within the factory function. (Annoyingly, I couldn't declare the typealias in the companion object next to the factory function: I had to declare it outside.)
This worked, but seemed ugly:
typealias Trimmed2 = Trimmed
#JvmInline
value class Trimmed private constructor(val str: String) {
init { assert(str == str.trim()) }
companion object {
// Kotlin won't let me put the typealias here. :-(
fun Trimmed(s: String): Trimmed = Trimmed2(s.trim()) // Don't want recursion here!
}
}
Another working solution is here, using a private constructor with a dummy argument. Of course Kotlin complained that the dummy argument was unused and so I had to put in a big (why is it so big?) annotation suppressing the warning, which is, again, ugly:
#JvmInline
value class Trimmed private constructor(val str: String) {
private constructor (untrimmed: String, #Suppress("UNUSED_PARAMETER") dummy: Unit) : this(untrimmed.trim())
init { assert(str == str.trim()) }
companion object {
fun Trimmed(s: String): Trimmed = Trimmed(s, Unit)
}
}
Is there a simpler, cleaner way to do this? For instance, a syntactic way to clarify to Kotlin that the companion function is trying to call the class constructor and not itself and so avoid the need for a dummy parameter?
Goals:
Code to construct instances of the class from outside this file should look like constructing an instance of a normal class: 'Trimmed("abc")', not using some factory function with a different name (e.g. "of" or "trimmedOf") or other alternate syntax.
It should be impossible to construct the object containing an untrimmed string. Outside code, and the Trimmed class itself, should be able to trust that if a Trimmed instance exists, that its contained str will be a trimmed string.
If I have something like the following:
interface IRecordService {
fun doSomething () : Record
}
#MongoRepository
interface IRecordRepository : MongoRepository<Record, String> {
}
#Service
class RecordService (
private val recordRepository : IRecordRepository // or just val instead of private val
) : IRecordService
{
override fun doSomething () : Record {
// does something
}
}
Is there any difference between using private val in the RecordService constructor vs just val? I've seen both being used but couldn't tell if there was a recommended way or why.
This isn't specific to Spring or Mongo; it's just core Kotlin. There are several things going on here; I'll try to unpick them.
Consider the simpler definition:
class MyClass(i: Int)
The parens specify the primary constructor: any parameters there (such as i) are passed into the class, and are available during construction. So you could pass them up to the superclass constructor, use them in property initialisers, and/or in an init block:
class MyClass(i: Int) : MySuperclass(i) {
val someProperty = i
init {
println("i is $i")
}
}
However, they don't persist after the instance has been constructed — so you couldn't refer to them in methods, or from outside the class.
If you want to do that, you have to define a property for each parameter you want to persist. You could do that explicitly, e.g.:
class MyClass(i: Int) {
val i2 = i
}
Here every instance of MyClass has a property called i2 which is initialised to the i constructor parameter.
However, because this is a common pattern, Kotlin provides a shortcut. If you specify val or var in the primary constructor:
class MyClass(val i: Int)
then Kotlin creates a property with the same name as the parameter, and initialises it for you. So every instance of the above class has a property called i that you can refer to at any time.
By default, properties in Kotlin are public: you can access them from inside the class, from subclasses, from other classes in the same module, and from any other code that has a MyClass instance.
However, in some cases it's useful to restrict access, so you can add a visibility modifier: internal prevents code in other modules from seeing it, protected allows only subclasses to see it, and private makes it visible only inside the class itself.
So, to answer your question: without the private modifier, any code that had access to your RecordService would be able to access its recordRepository property; adding private prevents that, and means that only code within RecordService can see it.
In general, it might be a good idea to centralise all access to the recordRepository in the one class; then making it private would ensure that no other code can muck around with it. That would make it easier to see what's going on, easier to debug, and safer to work on. (However, we obviously don't know about the rest of your program, and can't advise on whether that would be a good plan in your case.)
By the way, using an I prefix for interfaces is not a convention that's used much in Kotlin (or Java). There's often little point in having an interface with only one implementation; and if you could have multiple implementations, then better to use a simple term for the interface and then more specific terms for the implementations. (For example: the List interface with ArrayList and LinkedList classes, or Number with Int and Long.)
If you put val, it will be a constructor parameter and property. If you don't, it will be a constructor parameter (NOT property).
See Why to put val or var in kotlin class constructors
Firstly if you use val it converts this constructor parameter to property,If you do not want to hide this property (to set it) from other classes,you can use val.But if you do not want your property to be changed by other classes you should use private val instead.
Well, you can use both val and private val in your constructor there's no problem in that, it's just that with private keyword your properties wont be modified or accessed by some other class, so it basically provides some data hiding. If you talking about difference in functionality inside your RecordService class, then no there wont be any difference.
Experienced with Java, but fairly new to Kotlin.
When the subclass param has same name as a superclass val... Android Studio does not throw validation error stating need for #Override annotation. However, attempting to access name from within Business references the param name rather than the superclass val (which feels like an override to me).
class Business(
val name: String
) {
// ...
}
class FirstBusiness(name: String) : Business(name) {
val test = name; // name referencing param name rather than super's name
}
Of course, I can just name the param something different, but I really just want to pass the name to the superclass... otherwise excluding any storage of it in FirstBusiness.
Am I overlooking something? I'm surprised that even if I don't declare FirstBusiness param name as a val/var, it seems to be overriding Business.name. I'm assuming the param isn't truly overriding the super val as the IDE isn't complaining... but why is the param the only suggestion instead of the super val?
Edit: I do notice different (more expected from my Java experience) behavior if I do the param-passing outside of the primary constructor design like so...
class FirstBusiness : Business {
constructor(name: String) : super(name)
fun thing() {
val v = name // now references super's name
}
}
Thank you!
Just like how you would do it in Java if you have shadowed the name of a superclass's field, you can clarify it with the super keyword.
class FirstBusiness(name: String) : Business(name) {
val test = super.name
}
In your case, it's not overriding the superclass's property. What's happening is that property initializers at the property declaration sites are considered part of the primary constructor's initialization block, so the constructor parameter is closer in scope than the superclass's property.
Suppose for a moment that these classes were defined in Java, and in the superclass you simply used a field instead of a getter:
public class Business {
public String name;
public Business(String name) {
this.name = name;
}
}
Then your code where you initialize your property at its declaration site is just like initializing a field from a constructor, like this in Java:
public class FirstBusiness extends Business {
private String test;
public FirstBusiness(String name) {
super(name);
this.test = name; // It's using the parameter, not the superclass's
// property, but the superclass property isn't overridden.
}
}
Is there any way to create an instance of Derived but not call the constructor of Base?
open class Base(p: Int)
class Derived(p: Int) : Base(p)
You actually can do it
import sun.misc.Unsafe
open class Base(p: Int){
init {
println("Base")
}
}
class Derived(p: Int) : Base(p){
init {
println("Derived")
}
}
fun main() {
val unsafe = Unsafe::class.java.getDeclaredField("theUnsafe").apply {
isAccessible = true
}.get(null) as Unsafe
val x = unsafe.allocateInstance(Derived::class.java)
println("X = $x")
}
But don't, this solution is a low-level mechanism that was designed to be used only by the core Java library and not by standard users. You will break the logic of OOP if you use it.
this is not possible. The constructor of the derived class has to call (any) constructor of the base class in order to initialise the content(fields) of the base class.
This is also the same case in Java. Just that the default constructor is called by default (if no parameters are provided in the constructor), but if you have to choose between constructors with parameters, you always have to call them explicitly, because you have to choose which values to pass into the constructor.
You must always call a constructor of a super-class to ensure that the foundation of the class is initialized. But you can work around your issue by providing a no-arg constructor in the base class. Something like this:
open class Base(p: Int?){
val p: Int? = p
constructor(): this(null)
}
class Derived(p: Int) : Base()
The way you handle which constructor of the base class is default and which parameters are nullable, etc. will depend highly on the specific case.
I have started learning Kotlin. I would like to know the difference between init block and constructor.
What is the difference between this and how we can use this to improve?
class Person constructor(var name: String, var age: Int) {
var profession: String = "test"
init {
println("Test")
}
}
The init block will execute immediately after the primary constructor. Initializer blocks effectively become part of the primary constructor.
The constructor is the secondary constructor. Delegation to the primary constructor happens as the first statement of a secondary constructor, so the code in all initializer blocks is executed before the secondary constructor body.
Example
class Sample(private var s : String) {
init {
s += "B"
}
constructor(t: String, u: String) : this(t) {
this.s += u
}
}
Think you initialized the Sample class with
Sample("T","U")
You will get a string response at variable s as "TBU".
Value "T" is assigned to s from the primary constructor of Sample class.
Then immediately the init block starts to execute; it will add "B" to the s variable.
Next it is the secondary constructor turn; now "U" is added to the s variable to become "TBU".
Since,
The primary constructor cannot contain any code.
https://kotlinlang.org/docs/reference/classes.html
the init{..} blocks allow adding code to the primary constructor.
A class in Kotlin class a primary constructor (the one after a class name) which does not contain code, it is only able to initialize properties (e.g. class X(var prop: String)).
The init{..} block in the place, where you can put more code that will run after properties are initialized:
initializer blocks are executed in the same order as they appear in the class body, interleaved with the property initializers
More about that is in https://kotlinlang.org/docs/reference/classes.html#constructors
Here is an example:
class X(var b: String) {
val a = print("a")
init {
print("b")
}
constructor() : this("aaa") {
print("c")
}
}
X()
When called it prints abc. Thus the init{..} in invoked after primary constructor but before a secondary one.
As stated in the Kotlin docs:
The primary constructor cannot contain any code. Initialization code can be placed in initializer blocks, which are prefixed with the init keyword.
During an instance initialization, the initializer blocks are executed in the same order as they appear in the class body, interleaved with the property initializers: ...
https://kotlinlang.org/docs/classes.html#constructors