Matplotlib to Create histogram by Row - numpy

I have three arrays that essentially correspond to a matrix of gene expression values and then column labels specifying condition IDs and row values specifying a specific gene. I'm trying to define a function that will plot a histogram by just providing the gene name.
Basically I need to specify YAL001C and create a histogram of the values across the row. I'm very new to matplotlib and I'm not sure how do this. Would it have something to do with using something like an np.where(gene = YAL001C) argument? I guess I'm just not sure where that would fit into code for matplotlib.
I currently have the following code, but it doesn't work:
def histogram(gene):
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.where(geneList == gene, exprMat)
bins = 50
ax.hist(x, bins, color = 'green', edgecolor = 'black', alpha = 0.8 )
plt.show()

In case you want to avoid using pandas, you can still accomplish what you want using numpy, but you need to add some codes to figure out what row corresponds to a given gene. Here is one of the ways you could code it:
import numpy as np
import matplotlib.pyplot as plt
data = np.array([[0.15, -0.22, 0.07],
[-0.07, -0.76, -0.12],
[-1.22, -0.27, -0.1],
[-0.09, 1.2, 0.16]
])
def plot_hist(gene):
list_genes = ['YAL001C', 'YAL002W', 'YAL003W', 'YAL004W']
if gene in list_genes:
sn_gene = list_genes.index(gene)
else:
print(f'{gene} is not in the list of genes')
return
fig, ax = plt.subplots(figsize=(6,4))
plt.hist(data[sn_gene,:])
plt.title(f'gene: {gene}')
plt.show()
plot_hist('YAL001C')

Here is one of the ways you could accomplish that (passing the data related to the corresponding row to the method):
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = np.array([[0.15, -0.22, 0.07],
[-0.07, -0.76, -0.12],
[-1.22, -0.27, -0.1],
[-0.09, 1.2, 0.16]
])
df = pd.DataFrame(data=data,
index=['YAL001C', 'YAL002W', 'YAL003W', 'YAL004W'],
columns=['cln3-1', 'cln3-2', 'clb'])
print(df)
def plot_hist(gene):
fig, ax = plt.subplots(1,2, figsize=(9,4))
ax[0].bar(df.columns, df.loc[gene])
ax[1].hist(df.loc[gene])
plt.show()
plot_hist('YAL001C')
Left: bar-plot, Right: histogram

Related

How make scatterplot in pandas readable

I've been playing with Titanic dataset and working through some visualisations in Pandas using this tutorial. https://www.kdnuggets.com/2023/02/5-pandas-plotting-functions-might-know.html
I have a visual of scatterplot having used this code.
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('train.csv')
I was confused by bootstrap plot result so went on to scatterplot.
pd.plotting.scatter_matrix(df, figsize=(10,10), )
plt.show()
I can sort of interpret it but I'd like to put the various variables at top and bottom of every column. Is that doable?
You can use:
fig, ax = plt.subplots(4, 3, figsize=(20, 15))
sns.scatterplot(x = 'bedrooms', y = 'price', data = dataset, whis=1.5, ax=ax[0, 0])
sns.scatterplot(x = 'bathrooms', y = 'price', data = dataset, whis=1.5, ax=ax[0, 1])

Equivalent of Hist()'s Layout hyperparameter in Sns.Pairplot?

Am trying to find hist()'s figsize and layout parameter for sns.pairplot().
I have a pairplot that gives me nice scatterplots between the X's and y. However, it is oriented horizontally and there is no equivalent layout parameter to make them vertical to my knowledge. 4 plots per row would be great.
This is my current sns.pairplot():
sns.pairplot(X_train,
x_vars = X_train.select_dtypes(exclude=['object']).columns,
y_vars = ["SalePrice"])
This is what I would like it to look like: Source
num_mask = train_df.dtypes != object
num_cols = train_df.loc[:, num_mask[num_mask == True].keys()]
num_cols.hist(figsize = (30,15), layout = (4,10))
plt.show()
What you want to achieve isn't currently supported by sns.pairplot, but you can use one of the other figure-level functions (sns.displot, sns.catplot, ...). sns.lmplot creates a grid of scatter plots. For this to work, the dataframe needs to be in "long form".
Here is a simple example. sns.lmplot has parameters to leave out the regression line (fit_reg=False), to set the height of the individual subplots (height=...), to set its aspect ratio (aspect=..., where the subplot width will be height times aspect ratio), and many more. If all y ranges are similar, you can use the default sharey=True.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
# create some test data with different y-ranges
np.random.seed(20230209)
X_train = pd.DataFrame({"".join(np.random.choice([*'uvwxyz'], np.random.randint(3, 8))):
np.random.randn(100).cumsum() + np.random.randint(100, 1000) for _ in range(10)})
X_train['SalePrice'] = np.random.randint(10000, 100000, 100)
# convert the dataframe to long form
# 'SalePrice' will get excluded automatically via `melt`
compare_columns = X_train.select_dtypes(exclude=['object']).columns
long_df = X_train.melt(id_vars='SalePrice', value_vars=compare_columns)
# create a grid of scatter plots
g = sns.lmplot(data=long_df, x='SalePrice', y='value', col='variable', col_wrap=4, sharey=False)
g.set(ylabel='')
plt.show()
Here is another example, with histograms of the mpg dataset:
import matplotlib.pyplot as plt
import seaborn as sns
mpg = sns.load_dataset('mpg')
compare_columns = mpg.select_dtypes(exclude=['object']).columns
mpg_long = mpg.melt(value_vars=compare_columns)
g = sns.displot(data=mpg_long, kde=True, x='value', common_bins=False, col='variable', col_wrap=4, color='crimson',
facet_kws={'sharex': False, 'sharey': False})
g.set(xlabel='')
plt.show()

Barplot per each ax in matplotlib

I have the following dataset, ratings in stars for two fictitious places:
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'id':['A','A','A','A','A','A','A','B','B','B','B','B','B'],
'rating':[1,2,4,5,5,5,3,1,3,3,3,5,2]})
Since the rating is a category (is not a continuous data) I convert it to a category:
df['rating_cat'] = pd.Categorical(df['rating'])
What I want is to create a bar plot per each fictitious place ('A or B'), and the count per each rating. This is the intended plot:
I guess using a for per each value in id could work, but I have some trouble to decide the size:
fig, ax = plt.subplots(1,2,figsize=(6,6))
axs = ax.flatten()
cats = df['rating_cat'].cat.categories.tolist()
ids_uniques = df.id.unique()
for i in range(len(ids_uniques)):
ax[i].bar(df[df['id']==ids_uniques[i]], df['rating'].size())
But it returns me an error TypeError: 'int' object is not callable
Perhaps it's something complicated what I am doing, please, could you guide me with this code
The pure matplotlib way:
from math import ceil
# Prepare the data for plotting
df_plot = df.groupby(["id", "rating"]).size()
unique_ids = df_plot.index.get_level_values("id").unique()
# Calculate the grid spec. This will be a n x 2 grid
# to fit one chart by id
ncols = 2
nrows = ceil(len(unique_ids) / ncols)
fig = plt.figure(figsize=(6,6))
for i, id_ in enumerate(unique_ids):
# In a figure grid spanning nrows x ncols, plot into the
# axes at position i + 1
ax = fig.add_subplot(nrows, ncols, i+1)
df_plot.xs(id_).plot(axes=ax, kind="bar")
You can simplify things a lot with Seaborn:
import seaborn as sns
sns.catplot(data=df, x="rating", col="id", col_wrap=2, kind="count")
If you're ok with installing a new library, seaborn has a very helpful countplot. Seaborn uses matplotlib under the hood and makes certain plots easier.
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame({'id':['A','A','A','A','A','A','A','B','B','B','B','B','B'],
'rating':[1,2,4,5,5,5,3,1,3,3,3,5,2]})
sns.countplot(
data = df,
x = 'rating',
hue = 'id',
)
plt.show()
plt.close()

Pandas histogram df.hist() group by

How to plot a histogram with pandas DataFrame.hist() using group by?
I have a data frame with 5 columns: "A", "B", "C", "D" and "Group"
There are two Groups classes: "yes" and "no"
Using:
df.hist()
I get the hist for each of the 4 columns.
Now I would like to get the same 4 graphs but with blue bars (group="yes") and red bars (group = "no").
I tried this withouth success:
df.hist(by = "group")
Using Seaborn
If you are open to use Seaborn, a plot with multiple subplots and multiple variables within each subplot can easily be made using seaborn.FacetGrid.
import numpy as np; np.random.seed(1)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.randn(300,4), columns=list("ABCD"))
df["group"] = np.random.choice(["yes", "no"], p=[0.32,0.68],size=300)
df2 = pd.melt(df, id_vars='group', value_vars=list("ABCD"), value_name='value')
bins=np.linspace(df2.value.min(), df2.value.max(), 10)
g = sns.FacetGrid(df2, col="variable", hue="group", palette="Set1", col_wrap=2)
g.map(plt.hist, 'value', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()
This is not the most flexible workaround but will work for your question specifically.
def sephist(col):
yes = df[df['group'] == 'yes'][col]
no = df[df['group'] == 'no'][col]
return yes, no
for num, alpha in enumerate('abcd'):
plt.subplot(2, 2, num)
plt.hist(sephist(alpha)[0], bins=25, alpha=0.5, label='yes', color='b')
plt.hist(sephist(alpha)[1], bins=25, alpha=0.5, label='no', color='r')
plt.legend(loc='upper right')
plt.title(alpha)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
You could make this more generic by:
adding a df and by parameter to sephist: def sephist(df, by, col)
making the subplots loop more flexible: for num, alpha in enumerate(df.columns)
Because the first argument to matplotlib.pyplot.hist can take
either a single array or a sequency of arrays which are not required
to be of the same length
...an alternattive would be:
for num, alpha in enumerate('abcd'):
plt.subplot(2, 2, num)
plt.hist((sephist(alpha)[0], sephist(alpha)[1]), bins=25, alpha=0.5, label=['yes', 'no'], color=['r', 'b'])
plt.legend(loc='upper right')
plt.title(alpha)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
I generalized one of the other comment's solutions. Hope it helps someone out there. I added a line to ensure binning (number and range) is preserved for each column, regardless of group. The code should work for both "binary" and "categorical" groupings, i.e. "by" can specify a column wherein there are N number of unique groups. Plotting also stops if the number of columns to plot exceeds the subplot space.
import numpy as np
import matplotlib.pyplot as plt
def composite_histplot(df, columns, by, nbins=25, alpha=0.5):
def _sephist(df, col, by):
unique_vals = df[by].unique()
df_by = dict()
for uv in unique_vals:
df_by[uv] = df[df[by] == uv][col]
return df_by
subplt_c = 4
subplt_r = 5
fig = plt.figure()
for num, col in enumerate(columns):
if num + 1 > subplt_c * subplt_r:
continue
plt.subplot(subplt_c, subplt_r, num+1)
bins = np.linspace(df[col].min(), df[col].max(), nbins)
for lbl, sepcol in _sephist(df, col, by).items():
plt.hist(sepcol, bins=bins, alpha=alpha, label=lbl)
plt.legend(loc='upper right', title=by)
plt.title(col)
plt.tight_layout()
return fig
TLDR oneliner;
It won't create the subplots but will create 4 different plots;
[df.groupby('group')[i].plot(kind='hist',title=i)[0] and plt.legend() and plt.show() for i in 'ABCD']
Full working example below
import numpy as np; np.random.seed(1)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.randn(300,4), columns=list("ABCD"))
df["group"] = np.random.choice(["yes", "no"], p=[0.32,0.68],size=300)
[df.groupby('group')[i].plot(kind='hist',title=i)[0] and plt.legend() and plt.show() for i in 'ABCD']

Arrange two plots horizontally

As an exercise, I'm reproducing a plot from The Economist with matplotlib
So far, I can generate a random data and produce two plots independently. I'm struggling now with putting them next to each other horizontally.
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
df1 = pd.DataFrame({"broadcast": np.random.randint(110, 150,size=8),
"cable": np.random.randint(100, 250, size=8),
"streaming" : np.random.randint(10, 50, size=8)},
index=pd.Series(np.arange(2009,2017),name='year'))
df1.plot.bar(stacked=True)
df2 = pd.DataFrame({'usage': np.sort(np.random.randint(1,50,size=7)),
'avg_hour': np.sort(np.random.randint(0,3, size=7) + np.random.ranf(size=7))},
index=pd.Series(np.arange(2009,2016),name='year'))
plt.figure()
fig, ax1 = plt.subplots()
ax1.plot(df2['avg_hour'])
ax2 = ax1.twinx()
ax2.bar(left=range(2009,2016),height=df2['usage'])
plt.show()
You should try using subplots. First you create a figure by plt.figure(). Then add one subplot(121) where 1 is number of rows, 2 is number of columns and last 1 is your first plot. Then you plot the first dataframe, note that you should use the created axis ax1. Then add the second subplot(122) and repeat for the second dataframe. I changed your axis ax2 to ax3 since now you have three axis on one figure. The code below produces what I believe you are looking for. You can then work on aesthetics of each plot separately.
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
df1 = pd.DataFrame({"broadcast": np.random.randint(110, 150,size=8),
"cable": np.random.randint(100, 250, size=8),
"streaming" : np.random.randint(10, 50, size=8)},
index=pd.Series(np.arange(2009,2017),name='year'))
ax1 = fig.add_subplot(121)
df1.plot.bar(stacked=True,ax=ax1)
df2 = pd.DataFrame({'usage': np.sort(np.random.randint(1,50,size=7)),
'avg_hour': np.sort(np.random.randint(0,3, size=7) + np.random.ranf(size=7))},
index=pd.Series(np.arange(2009,2016),name='year'))
ax2 = fig.add_subplot(122)
ax2.plot(df2['avg_hour'])
ax3 = ax2.twinx()
ax3.bar(left=range(2009,2016),height=df2['usage'])
plt.show()