Mapping huggingface tokens to original input text - tokenize

How can I map the tokens I get from huggingface DistilBertTokenizer to the positions of the input text?
e.g. I have a new GPU -> ["i", "have", "a", "new", "gp", "##u"] -> [(0, 1), (2, 6), ...]
I'm interested in this because suppose that I have some attention values assigned to each token, I would like to show which part of the original text it actually corresponds to, since the tokenized version is not non-ML people friendly.
I have not found any solution to this yet especially when there is [UNK] token. Any insights would be appreciated. Thank you!

In the newer versions of Transformers (it seems like since 2.8), calling the tokenizer returns an object of class BatchEncoding when methods __call__, encode_plus and batch_encode_plus are used. You can use method token_to_chars that takes the indices in the batch and returns the character spans in the original string.

Related

Confused about Tensorflow Algorithm function

Colab notebook
Under the section on Feature Columns, there is this specific line of code
feature_columns = [ ]
for feature_name in CATEGORICAL_COLUMNS:
vocabulary = dftrain[feature_name].unique()
I'm struggling to understand what this is doing. I don't really know what to search up too as I'm still quite new to programming. Why is there a need for this line? I understand that it outputs all unique values of the specified feature_name, but don't get how it's linked to the next line.
When you don't understand a function just google the module name (TensorFlow) and the function name. I found the documentation for tf.feature_column.categorical_column_with_vocabulary_list described here. To quote the documentation:
Use this when your inputs are in string or integer format, and you have an in-memory vocabulary mapping each value to an integer ID. By default, out-of-vocabulary values are ignored.
What this section of code is doing is going through each column and mapping each unique string value to a unique integer (its location in the vocabulary list). Transforming your column using this type of mapping is common for categorical data. The reason that unique is needed is because tf.feature_column.categorical_column_with_vocabulary_list needs a unique list as an argument before it can work its magic.
In the future please put all necessary code in the question. It should not be required to visit another link to answer your question.

How to assign lexical features to new unanalyzable tokens in spaCy?

I'm working with spaCy, version 2.3. I have a not-quite-regular-expression scanner which identifies spans of text which I don't want analyzed any further. I've added a pipe at the beginning of the pipeline, right after the tokenizer, which uses the document retokenizer to make these spans into single tokens. I'd like to remainder of the pipeline to treat these tokens as proper nouns. What's the right way to do this? I've set the POS and TAG attrs in my calls to retokenizer.merge(), and those settings persist in the resulting sentence parse, but the dependency information on these tokens makes me doubt that my settings have had the desired impact. Is there a way to update the vocabulary so that the POS tagger knows that the only POS option for these tokens is PROPN?
Thanks in advance.
The tagger and parser are independent (the parser doesn't use the tags as features), so modifying the tags isn't going to affect the dependency parse.
The tagger doesn't overwrite any existing tags, so if a tag is already set, it doesn't modify it. (The existing tags don't influence its predictions at all, though, so the surrounding words are tagged the same way they would be otherwise.)
Setting TAG and POS in the retokenizer is a good way to set those attributes. If you're not always retokenizing and you want to set the TAG and/or POS based on a regular expression for the token text, then the best way to do this is a custom pipeline component that you add before the tagger that sets tags for certain words.
The transition-based parsing algorithm can't easily deal with partial dependencies in the input, so there isn't a straightforward solution here. I can think of a few things that might help:
The parser does respect pre-set sentence boundaries. If your skipped tokens are between sentences, you can set token.is_sent_start = True for that token and the following token so that the skipped token always ends up in its own sentence. If the skipped tokens are in the middle of a sentence or you want them to be analyzed as nouns in the sentence, then this won't help.
The parser does use the token.norm feature, so if you set the NORM feature in the retokenizer to something extremely PROPN-like, you might have a better chance of getting the intended analysis. For example, if you're using a provided English model like en_core_web_sm, use a word you think would be a frequent similar proper noun in American newspaper text from 20 years ago, so if the skipped token should be like a last name, use "Bush" or "Clinton". It won't guarantee a better parse, but it could help.
If you using a model with vectors like en_core_web_lg, you can also set the vectors for the skipped token to be the same as a similar word (check that the similar word has a vector first). This is how to tell the model to refer to the same row in the vector table for UNKNOWN_SKIPPED as Bush.
The simpler option (that duplicates the vectors in the vector table internally):
nlp.vocab.set_vector("UNKNOWN_SKIPPED", nlp.vocab["Bush"].vector)
The less elegant version that doesn't duplicate vectors underneath:
nlp.vocab.vectors.add("UNKNOWN_SKIPPED", row=nlp.vocab["Bush"].rank)
nlp.vocab["UNKNOWN_SKIPPED"].rank = nlp.vocab["Bush"].rank
(The second line is only necessary to get this to work for a model that's currently loaded. If you save it as a custom model after the first line with nlp.to_disk() and reload it, then only the first line is necessary.)
If you just have a small set of skipped tokens, you could update the parser with some examples containing these tokens, but this can be tricky to do well without affecting the accuracy of the parser for other cases.
The NORM and vector modifications will also influence the tagger, so it's possible if you choose those well, you might get pretty close to the results you want.

How to serialize data in example-in-example format for tensorflow-ranking?

I'm building a ranking model with tensorflow-ranking. I'm trying to serialize a data set in the TFRecord format and read it back at training time.
The tutorial doesn't show how to do this. There is some documentation here on an example-in-example data format but it's hard for me to understand: I'm not sure what the serialized_context or serialized_examples fields are or how they fit into examples and I'm not sure what the Serialize() function in the code block is.
Concretely, how can I write and read data in example-in-example format?
The context is a map from feature name to tf.train.Feature. The examples list is a list of maps from feature name to tf.train.Feature. Once you have these, the following code will create an "example-in-example":
context = {...}
examples = [{...}, {...}, ...]
serialized_context = tf.train.Example(features=tf.train.Features(feature=context)).SerializeToString()
serialized_examples = tf.train.BytesList()
for example in examples:
tf_example = tf.train.Example(features=tf.train.Features(feature=example))
serialized_examples.value.append(tf_example.SerializeToString())
example_in_example = tf.train.Example(features=tf.train.Features(feature={
'serialized_context': tf.train.Feature(bytes_list=tf.train.BytesList(value=[serialized_context])),
'serialized_examples': tf.train.Feature(bytes_list=serialized_examples)
}))
To read the examples back, you may call
tfr.data.parse_from_example_in_example(example_pb,
context_feature_spec = context_feature_spec,
example_feature_spec = example_feature_spec)
where context_feature_spec and example_feature_spec are maps from feature name to tf.io.FixedLenFeature or tf.io.VarLenFeature.
First of all, I recommend reading this article to ensure that you know how to create a tf.Example as well as tf.SequenceExample (which by the way, is the other data format supported by TF-Ranking):
Tensorflow Records? What they are and how to use them
In the second part of this article, you will see that a tf.SequenceExample has two components: 1) Context and 2)Sequence (or examples). This is the same idea that Example-in-Example is trying to implement. Basically, context is the set of features that are independent of the items that you want to rank (a search query in the case of search, or user features in the case of a recommendation system) and the sequence part is a list of items (aka examples). This could be a list of documents (in search) or movies (in recommendation).
Once you are comfortable with tf.Example, Example-in-Example will be easier to understand. Take a look at this piece of code for how to create an EIE instance:
https://www.gitmemory.com/issue/tensorflow/ranking/95/518480361
1) bundle context features together in a tf.Example object and serialize it
2) bundle sequence(example) features (each of which could contain a list of values) in another tf.Example object and serialize this one too.
3) wrap these inside a parent tf.Example
4) (if you're writing to tfrecords) serialize the parent tf.Example object and write to your tfrecord file.

Reading Fortran binary file in Python

I'm having trouble reading an unformatted F77 binary file in Python.
I've tried the SciPy.io.FortraFile method and the NumPy.fromfile method, both to no avail. I have also read the file in IDL, which works, so I have a benchmark for what the data should look like. I'm hoping that someone can point out a silly mistake on my part -- there's nothing better than having an idiot moment and then washing your hands of it...
The data, bcube1, have dimensions 101x101x101x3, and is r*8 type. There are 3090903 entries in total. They are written using the following statement (not my code, copied from source).
open (unit=21, file=bendnm, status='new'
. ,form='unformatted')
write (21) bcube1
close (unit=21)
I can successfully read it in IDL using the following (also not my code, copied from colleague):
bcube=dblarr(101,101,101,3)
openr,lun,'bcube.0000000',/get_lun,/f77_unformatted,/swap_if_little_endian
readu,lun,bcube
free_lun,lun
The returned data (bcube) is double precision, with dimensions 101x101x101x3, so the header information for the file is aware of its dimensions (not flattend).
Now I try to get the same effect using Python, but no luck. I've tried the following methods.
In [30]: f = scipy.io.FortranFile('bcube.0000000', header_dtype='uint32')
In [31]: b = f.read_record(dtype='float64')
which returns the error Size obtained (3092150529) is not a multiple of the dtypes given (8). Changing the dtype changes the size obtained but it remains indivisible by 8.
Alternately, using fromfile results in no errors but returns one more value that is in the array (a footer perhaps?) and the individual array values are wildly wrong (should all be of order unity).
In [38]: f = np.fromfile('bcube.0000000')
In [39]: f.shape
Out[39]: (3090904,)
In [42]: f
Out[42]: array([ -3.09179121e-030, 4.97284231e-020, -1.06514594e+299, ...,
8.97359707e-029, 6.79921640e-316, -1.79102266e-037])
I've tried using byteswap to see if this makes the floating point values more reasonable but it does not.
It seems to me that the np.fromfile method is very close to working but there must be something wrong with the way it's reading the header information. Can anyone suggest how I can figure out what should be in the header file that allows IDL to know about the array dimensions and datatype? Is there a way to pass header information to fromfile so that it knows how to treat the leading entry?
I played a bit around with it, and I think I have an idea.
How Fortran stores unformatted data is not standardized, so you have to play a bit around with it, but you need three pieces of information:
The Format of the data. You suggest that is 64-bit reals, or 'f8' in python.
The type of the header. That is an unsigned integer, but you need the length in bytes. If unsure, try 4.
The header usually stores the length of the record in bytes, and is repeated at the end.
Then again, it is not standardized, so no guarantees.
The endianness, little or big.
Technically for both header and values, but I assume they're the same.
Python defaults to little endian, so if that were the the correct setting for your data, I think you would have already solved it.
When you open the file with scipy.io.FortranFile, you need to give the data type of the header. So if the data is stored big_endian, and you have a 4-byte unsigned integer header, you need this:
from scipy.io import FortranFile
ff = FortranFile('data.dat', 'r', '>u4')
When you read the data, you need the data type of the values. Again, assuming big_endian, you want type >f8:
vals = ff.read_reals('>f8')
Look here for a description of the syntax of the data type.
If you have control over the program that writes the data, I strongly suggest you write them into data streams, which can be more easily read by Python.
Fortran has record demarcations which are poorly documented, even in binary files.
So every write to an unformatted file:
integer*4 Test1
real*4 Matrix(3,3)
open(78,format='unformatted')
write(78) Test1
write(78) Matrix
close(78)
Should ultimately be padded by an np.int32 values. (I've seen references that this tells you the record length, but haven't verified persconally.)
The above could be read in Python via numpy as:
input_file = open(file_location,'rb')
datum = np.dtype([('P1',np.int32),('Test1',np.int32),('P2',np.int32),('P3',mp.int32),('MatrixT',(np.float32,(3,3))),('P4',np.int32)])
data = np.fromfile(input_file,datum)
Which should fully populate the data array with the individual data sets of the format above. Do note that numpy expects data to be packed in C format (row major) while Fortran format data is column major. For square matrix shapes like that above, this means getting the data out of the matrix requires a transpose as well, before using. For non square matrices, you will need to reshape and transpose:
Matrix = np.transpose(data[0]['MatrixT']
Transposing your 4-D data structure is going to need to be done carefully. You might look into SciPy for automated ways to do so; the SciPy package seems to have Fortran related utilities which I have not fully explored.

Spacy tokenizer add exception for n't

I want to convert n't to not using this code:
doc = nlp(u"this. isn't ad-versere")
special_case = [{ORTH: u"not"}]
nlp.tokenizer.add_special_case(u"n't",specia_case)
print [text.orth_ for text in doc]
But I get the output as:
[u'this', u'.', u'is', u"n't", u'ad', u'-', u'versere']
n't is still n't
How to solve the problem?
The reason your logic doesn't work is because spaCy uses non-destructive tokenization. This means that it'll always keep a reference to the original input text, and you'll never lose any information.
The tokenizer exceptions and special cases let you define rules for how to split a string of text into a sequence of tokens – but they won't let you modify the original string. The ORTH values of the tokens plus whitespace always needs to match the original text. So the tokenizer can split "isn't" into ["is", "n't"], but not into ["is", "not"].
To define a "normalised" form of the string, spaCy uses the NORM attribute, available as token.norm_. You can see this in the source of the tokenizer exceptions here – the norm of the token "n't" is "not". The NORM attribute is also used as a feature in the model, to ensure that tokens with the same norm receive similar representations (even if one is more frequent in the training data than the other).
So if you're interested in the normalised form, you can simply use the norm_ attribute instead:
>>> [t.norm_ for t in doc]
['this', '.', 'is', 'not', 'ad', '-', 'versere']