Multiple debian packages without dependencies pollution - cmake

I am trying to create multiple debian packages using CPack. I have been following the documentation from:
https://gitlab.kitware.com/cmake/community/-/wikis/doc/cpack/Component-Install-With-CPack
and
https://cmake.org/cmake/help/latest/module/CPackComponent.html
However it seems that any install(COMPONENT) is being considered for the final packages, including those defined under a add_subdirectory(EXCLUDE_FROM_ALL).
Consider the following simple cmake structure:
% cat CMakeLists.txt
cmake_minimum_required(VERSION 3.18)
project(p)
add_subdirectory(dep EXCLUDE_FROM_ALL)
# define our install + component
install(FILES main.py
DESTINATION main
COMPONENT main-comp
)
# multiple deb package is desired:
set(CPACK_DEB_COMPONENT_INSTALL ON)
# disable not needed:
set(CPACK_BINARY_STGZ OFF)
set(CPACK_BINARY_TZ OFF)
set(CPACK_SOURCE_TGZ OFF)
#
set(CPACK_BINARY_DEB ON)
set(CPACK_PACKAGE_CONTACT foo#bar.com)
include(CPack)
and
% cat dep/CMakeLists.txt
install(FILES dep.txt
DESTINATION dep
COMPONENT remove-me
)
With:
% touch main.py dep/dep.txt
On my debian machine (buster) here is what I see:
% make package
[...]
CPack: - package: /tmp/p/bin/p-0.1.1-Linux-main-comp.deb generated.
CPack: - package: /tmp/p/bin/p-0.1.1-Linux-remove-me.deb generated.
I have no interest in the package related to COMPONENT remove-me, is there a way to discard it completely for the list of debian packages to be generated.
For reference:
% cmake --version
cmake version 3.18.4
Use case is where dep is actually a git remote repository which I am not able to modify (consider it read-only).

Related

Is it possible to determine whether CMake install(CODE) is called from the "install" or "package" stage?

I'm using CMake v3.21.0 to invoke Qt's windeployqt during the install stage by the means of the install(CODE) command as follows:
install(
CODE "
execute_process(
COMMAND \"${CMAKE_COMMAND}\" -E
env PATH=\"${windeployqt_ROOT_DIR}\"
\"${windeployqt_EXECUTABLE}\"
# TODO(2021-08-25 by wolters): This is a different path when CPack is`
# used. How to check for this case and obtain the correct output path?
--dir \"${CMAKE_INSTALL_PREFIX}/${args_INSTALL_SUFFIX}\"
--no-quick-import
--no-system-d3d-compiler
--no-virtualkeyboard
--no-compiler-runtime
--no-webkit2
--no-angle
--no-opengl-sw
--verbose 0
\"\$<TARGET_FILE:${args_TARGET}>\"
)
"
COMPONENT runtime
)
This works fine if installing the project:
cmake --build . --config RelWithDebInfo --target install
But when creating a CPack package the files created by windeployqt are not part of the package (ZIP in this case):
cpack -G ZIP -C RelWithDebInfo -D CPACK_COMPONENTS_ALL="runtime"
I know that the issue is the usage of ${CMAKE_INSTALL_PREFIX} in the CODE.
For the install target this is correct.
For the package target this is not correct. Instead the build directory for the current CPack generator should be used, e.g. ${CMAKE_CURRENT_BINARY_DIR}/_CPack_Packages/win64/ZIP/${CPACK_PACKAGE_FILE_NAME}.
My questions are:
Is there a way to differentiate between install and package target in the CODE section? (pseudo-code: if(CMAKE_IS_PACKAGING))
If there is a way: Is it possible to obtain or dynamically build the directory path to the actual CPack temporary "install" directory?
If both problems can be solved the files generated by windeployqt should be part of the packages generated by CPack.
The variable CMAKE_INSTALL_PREFIX should not be expanded in the CMakeLists.txt, as you are doing. Its actual value at invocation time is available inside the install(CODE) fragments.
Consider the following snippet:
cmake_minimum_required(VERSION 3.21)
project(test NONE)
install(CODE [[message(STATUS "HERE: ${CMAKE_INSTALL_PREFIX}")]])
Note that [[ ... ]] escapes variable expansions (you could also use backslashes). Now if you configure this project with -DCMAKE_INSTALL_PREFIX=/tmp/install, you'll see the message print as you expect.
$ cmake -S . -B build -DCMAKE_INSTALL_PREFIX=/tmp/install
-- Configuring done
-- Generating done
-- Build files have been written to: /home/alex/test/build
$ cmake --build build/ --target install
[0/1] Install the project...
-- Install configuration: ""
-- HERE: /tmp/install
If you now run the install script again without reconfiguring or rebuilding, it will still work:
$ cmake --install build/ --prefix /tmp/other-prefix
-- Install configuration: ""
-- HERE: /tmp/other-prefix
This is how CPack runs your install rules. It does not use the configuration-time value of CMAKE_INSTALL_PREFIX. It expects your project to be relocatable (i.e. bug-free).

CMake with MinGW-w64 does not install built DLL, but it's being built fine

NB: The files referenced here are all given below the horizontal ruler a bit down.
This is the MWE derived from a project where I ran into this. CMake version used is 3.12.2 on Ubuntu 16.04 (16.04.6 to be precise).
The goal is to create a CMakeLists.txt which can be re-targeted to build a Windows DLL using the MinGW-w64 toolchain (apt-get install mingw-w64 on Ubuntu/Debian).
When using no explicit toolchain file (i.e. without -DCMAKE_TOOLCHAIN_FILE=...), all works as expected and the lib${PRJNAME}.so gets installed as desired. However, once I use the toolchain file given below, I only get the resulting import lib ${PRJNAME}Lib.dll.a but not the corresponding .dll file installed.
If I invoke the Bash script as follows:
./build.sh 2>&1 |grep '^-- Install'
the output is:
-- Install configuration: ""
-- Installing: /home/user/cmake-test/build-native/install-target/lib/libtest.so
-- Install configuration: ""
-- Installing: /home/user/cmake-test/build-windows/install-target/lib/test.dll.a
As you can see the native build installs the actual shared library, but the one targeting Windows only installs the import lib, not the DLL. What I'd expect to see is something like this:
-- Install configuration: ""
-- Installing: /home/user/cmake-test/build-native/install-target/lib/libtest.so
-- Install configuration: ""
-- Installing: /home/user/cmake-test/build-windows/install-target/lib/test.dll
-- Installing: /home/user/cmake-test/build-windows/install-target/lib/test.dll.a
What is it I am doing wrong here? It would seem that the install() function is invoked properly:
install(
TARGETS ${PRJNAME}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
COMPONENT library
)
Clearly ARCHIVE DESTINATION takes effect as that's where the import lib ends up. But why is the built .dll completely ignored here?
Side-note: I am aware of GNUInstallDirs, but that fell totally apart once I started cross-compiling for Windows. So I am setting the desired paths "manually" before invoking install().
build.sh (should be executable)
The script will first wipe the folders build-native and build-windows, if present, and then create those again. Then it will invoke cmake from these folders respectively, targeting using the system (native) toolchain and the MinGW-w64 toolchain respectively. Last but not least it will invoke the installation from these folders respectively.
So if you place this into an empty folder along with the other files this should not meddle with your data elsewhere in any way.
#/usr/bin/env bash
for i in native windows; do
D=build-$i
test -d $D && rm -rf $D
mkdir $D
[[ "$i" == "windows" ]] && TCFILE=mingw64-64bit.cmake
( set -x; cd $D && cmake .. -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX=. ${TCFILE+-DCMAKE_TOOLCHAIN_FILE=$TCFILE} -DCMAKE_VERBOSE_MAKEFILE=ON )
( set -x; cd $D && cmake --build . --target install )
done
test.cpp
#ifdef _WIN32
# if defined(test_EXPORTS)
# define TEST_API __declspec(dllexport)
# else
# define TEST_API __declspec(dllimport)
# endif
#else
# define TEST_API
#endif
TEST_API void SomeFunction()
{
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.12)
set(PRJNAME test)
set(TARGET_DIR "${CMAKE_CURRENT_BINARY_DIR}/install-target")
project(${PRJNAME})
add_library(${PRJNAME} SHARED test.cpp)
if(CMAKE_SYSTEM_NAME MATCHES "Windows")
set(DLL_PREFIX)
set(DLL_POSTFIX Lib)
else()
set(DLL_PREFIX lib)
set(DLL_POSTFIX)
endif()
set_target_properties(
${PRJNAME}
PROPERTIES
PREFIX "${DLL_PREFIX}"
IMPORT_PREFIX "${DLL_PREFIX}"
DEBUG_POSTFIX "${DLL_POSTFIX}"
RELEASE_POSTFIX "${DLL_POSTFIX}"
CXX_STANDARD 11
CXX_EXTENSIONS OFF
CXX_STANDARD_REQUIRED ON
POSITION_INDEPENDENT_CODE 1
)
set(CMAKE_INSTALL_PREFIX ${TARGET_DIR})
set(CMAKE_INSTALL_LIBDIR lib)
set(CMAKE_INSTALL_INCLUDEDIR include)
install(
TARGETS ${PRJNAME}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
COMPONENT library
)
mingw64-64bit.cmake
set(CMAKE_SYSTEM_NAME Windows)
set(TOOLCHAIN_PREFIX x86_64-w64-mingw32)
set(CMAKE_C_COMPILER ${TOOLCHAIN_PREFIX}-gcc-posix)
set(CMAKE_CXX_COMPILER ${TOOLCHAIN_PREFIX}-g++-posix)
set(CMAKE_RC_COMPILER ${TOOLCHAIN_PREFIX}-windres)
set(CMAKE_FIND_ROOT_PATH /usr/${TOOLCHAIN_PREFIX})
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
install(
TARGETS ${PRJNAME}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_LIBDIR}
COMPONENT library
)
According to the install command documentation the DLL file is considered a runtime object. I tested the example on Ubuntu 14.04.

correctly set the location of imported cmake targets for an installed package

I would like to be able to import targets from an installed library but
when using:
install(TARGETS
foobar
EXPORT foobarLibTargets
LIBRARY DESTINATION lib)
cmake generates a foobarLibTargets.cmake containing an absolute path:
set_target_properties(foobar PROPERTIES
IMPORTED_LOCATION_NOCONFIG "/where/I/happened/to/build/libfoobar.so"
IMPORTED_SONAME_NOCONFIG "libfoobar.so"
)
Such that a build using the imported target from the installation will fail as the path does not exist.
Q How can I get it to use the correct relative location instead?
This would be equivalent to:
set_target_properties(foobar PROPERTIES
IMPORTED_LOCATION_NOCONFIG "#PACKAGE_LIBRARY_INSTALL_DIR#/libfoobar.so")
If I look at another project which does something similar but works it has:
set_target_properties(foobar PROPERTIES
IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/libfoobar.so"
IMPORTED_SONAME_RELEASE "libfoobar.so"
)
Here are some example files that reproduce the issue:
CMakeLists.txt:
cmake_minimum_required(VERSION 3.7)
project(FOOBAR VERSION 1.2.3)
set(VERSION 1.2.3)
set(CMAKE_INSTALL_RPATH "$ORIGIN/../lib:$ORIGIN/")
set(CMAKE_INSTALL_PREFIX "/opt/foobar" CACHE PATH "Install path prefix" FORCE)
add_library(foobar SHARED
foobar.cpp
)
set(CPACK_INCLUDE_TOPLEVEL_DIRECTORY 0)
set(CPACK_PACKAGE_NAME "foobar")
set(CPACK_PACKAGE_VERSION ${VERSION})
set(CPACK_PACKAGING_INSTALL_PREFIX ${CMAKE_INSTALL_PREFIX})
set(CPACK_PACKAGE_FILE_NAME "${CPACK_PACKAGE_NAME}-${CPACK_PACKAGE_VERSION}")
include(CPack)
# Indicate the content of the distribution pakcages
install(FILES
${CMAKE_SOURCE_DIR}/foobar.h
DESTINATION include
)
install(TARGETS
foobar
EXPORT foobarLibTargets
LIBRARY DESTINATION lib)
include(CMakePackageConfigHelpers)
set(ConfigFileInstallDir lib/cmake/foobar)
set(INCLUDE_INSTALL_DIR include)
set(LIBRARY_INSTALL_DIR lib)
message(STATUS "CMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}")
configure_package_config_file(foobarConfig.cmake.in
"${CMAKE_BINARY_DIR}/foobarConfig.cmake"
INSTALL_DESTINATION "${ConfigFileInstallDir}"
PATH_VARS INCLUDE_INSTALL_DIR LIBRARY_INSTALL_DIR)
write_basic_package_version_file(
"${CMAKE_BINARY_DIR}/foobarConfigVersion.cmake"
VERSION "${VERSION}"
COMPATIBILITY ExactVersion)
export(EXPORT foobarLibTargets
FILE "${CMAKE_CURRENT_BINARY_DIR}/foobarLibTargets.cmake")
install(EXPORT foobarLibTargets
FILE foobarTargets.cmake
DESTINATION lib/cmake)
install(FILES
"${CMAKE_CURRENT_BINARY_DIR}/foobarConfig.cmake"
"${CMAKE_CURRENT_BINARY_DIR}/foobarConfigVersion.cmake"
"${CMAKE_CURRENT_BINARY_DIR}/foobarLibTargets.cmake"
DESTINATION "${ConfigFileInstallDir}")
foobarConfig.cmake.in:
set(FOOBAR_VERSION #VERSION#)
#PACKAGE_INIT#
set_and_check(FOOBAR_INCLUDE_DIR "#PACKAGE_INCLUDE_INSTALL_DIR#")
set_and_check(FOOBAR_LIBRARY "#PACKAGE_LIBRARY_INSTALL_DIR#/libfoobar.so")
set_and_check(FOOBAR_LIBRARY_DIR "#PACKAGE_LIBRARY_INSTALL_DIR#")
include("${CMAKE_CURRENT_LIST_DIR}/foobarLibTargets.cmake")
# workaround - correct absolute path in the above
# this shouldn't be necessary (hence this question)
#set_target_properties(foobar PROPERTIES
# IMPORTED_LOCATION_NOCONFIG "#PACKAGE_LIBRARY_INSTALL_DIR#/libfoobar.so"
#)
foobar.h:
void hello();
foobar.cpp:
#include <iostream>
void hello() {
std::cerr << "hello world\n";
}
useFoo.cmake (a CMakeLists.txt for an example project using the installed library):
cmake_minimum_required(VERSION 3.7)
project(useFoo VERSION 1.2.3)
set(VERSION 1.2.3)
find_package(foobar)
file(GENERATE OUTPUT foobar-gen CONTENT "<TARGET_FILE:foobar>=$<TARGET_FILE:foobar>\n")
message(STATUS "FOOBAR_LIBRARY_DIR=${FOOBAR_LIBRARY_DIR}")
message(STATUS "FOOBAR_INCLUDE_DIR=${FOOBAR_INCLUDE_DIR}")
build.sh (build and use the installation package):
#!/bin/sh
rm -rf target
mkdir target
cd target
cmake .. &&
make &&
cpack -G TGZ
if [ $? -ne 0 ]; then
echo "doh!"
exit 1
fi
cd ..
rm -rf install
mkdir install
cd install
tar -xvzf ../target/foobar-1.2.3.tar.gz
cp ../useFoo.cmake CMakeLists.txt
export CMAKE_PREFIX_PATH=`pwd`/opt/foobar/lib/cmake:`pwd`/opt/foobar/lib/cmake/foobar
cmake .
if [ $? -ne 0 ]; then
echo "doh!"
exit 1
fi
cat foobar-gen
The output of cat foobar-gen is:
<TARGET_FILE:foobar>=/where/I/happened/to/build/libfoobar.so
I would like it to be:
<TARGET_FILE:foobar>=/where/I/actually/installed/libfoobar.so
Which it becomes if I uncomment the workaround.
Is there a way which avoids the workaround?
The related question - Strange issue with variables in a config-file cmake package - has similar code which both reproduces this issue and adds another one on top.
The main issue is that the two files foobarLibTargets.cmake and foobarTargets.cmake were both installed and the wrong one was picked up.
You will find below an improved project along with remarks to better organize the build system.
ChangeLog summarizing edits
2019-05-25
Create GitHub project to streamline reuse and adaptation. See https://github.com/jcfr/stackoverflow-56135785-answer
Rename project and source directory from foobar to FooBarLib, update Suggestions section accordingly
Improve build.sh
Updated suggestions (CPACK_PACKAGING_INSTALL_PREFIX should be absolute)
RPM:
Add support for building RPM package using make package
Update build.sh to display content of RPM package
Remarks
Two config files should be generated:
one for the build tree: this allow user of your project to directly build against your project and import targets
one for the install tree (which also end up being packaged)
Do not force the value of CMAKE_INSTALL_PREFIX
CPACK_PACKAGING_INSTALL_PREFIX should NOT be set to an absolute directory
For sake of consistency, use foobarTargets instead of foobarLibTargets
<projecname_uc> placeholder used below correspond to the name of the project upper-cased (ABC instead of abc)
To allow configuring your project when vendorized along other one, prefer variable with <projecname_uc>_. This means <projecname_uc>_INSTALL_LIBRARY_DIR is better than LIBRARY_INSTALL_DIR.
To allow user of the project to configure *_INSTALL_DIR variables, wrap them around if(DEFINED ...)
Consistently use variables (e.g LIBRARY_INSTALL_DIR should always be used instead of lib)
Prefer naming variable <projecname_uc>_INSTALL_*_DIR instead of <projecname_uc>_*_INSTALL_DIR, it make it easier to know the purpose of the variable when reading the code.
Since version is already associated with the project, there is no need to set VERSION variable. Instead, you can use PROJECT_VERSION or FOOBAR_VERSION
If starting a new project, prefer the most recent CMake version. CMake 3.13 instead of CMake 3.7
Introduced variable <projecname_uc>_INSTALL_CONFIG_DIR
<project_name>Targets.cmake should not be installed using install(FILES ...), it is already associated with an install rule
conditionally set CMAKE_INSTALL_RPATH, it is valid only on Linux
<project_name>Config.cmake.in:
there is no need to set FOOBAR_LIBRARY, this information is already associated with the exported foobar target
FOOBAR_LIBRARY_DIR is also not needed, this information is already associated with the exported foobar target
instead of setting FOOBAR_INCLUDE_DIR, the command target_include_directories should be used
remove setting of FOOBAR_VERSION, the generate version file already takes care of setting the version.
always specify ARCHIVE, LIBRARY and RUNTIME when declaring install rules for target. It avoid issue when switching library type. One less thing to think about.
always specify component with your install rule. It allows user of your project to selectively install part of it only development component or only runtime one, ...
initializing CMAKE_BUILD_TYPE is also important, it ensures the generated Targets file are associated with a configuration (instead of having the suffix -noconfig.cmake)
Suggested changes
Generally speaking, I recommend to have a source tree, a build tree and install tree. The files posted below assumed the following layout:
./build.sh
./FooBarLib/FooBarLibConfig.cmake.in
./FooBarLib/CMakeLists.txt
./FooBarLib/foobar.cpp
./FooBarLib/foobar.h
./FooBarLib-build
./FooBarLib-install
./useFoo/CMakeLists.txt
./useFoo-build
build.sh
#!/bin/bash
set -xeu
set -o pipefail
script_dir=$(cd $(dirname $0) || exit 1; pwd)
project_name=FooBarLib
archive_name=${project_name}
# cleanup ${project_name}-build
cd $script_dir
rm -rf ${project_name}-build
mkdir ${project_name}-build
cd ${project_name}-build
# configure, build and package ${project_name}
cmake ../${project_name}
make
make package # equivalent to running "cpack -G TGZ" and "cmake -G RPM"
# extract ${project_name} archive
cd $script_dir
rm -rf ${project_name}-install
mkdir ${project_name}-install
cd ${project_name}-install
tar -xvzf ../${project_name}-build/${archive_name}-1.2.3.tar.gz
# cleanup useFoo-build
cd $script_dir
rm -rf useFoo-build
mkdir useFoo-build
cd useFoo-build
cpack_install_prefix=/opt
# configure useFoo
cmake -D${project_name}_DIR=$script_dir/${project_name}-install${cpack_install_prefix}/lib/cmake/${project_name}/ ../useFoo
cat foobar-gen
# display content of RPM. If command "rpmbuild" is available, RPM package is expected.
if command -v rpmbuild &> /dev/null; then
rpm -qlp $script_dir/${project_name}-build/${archive_name}-1.2.3.rpm
fi
FooBarLib/CMakeLists.txt
cmake_minimum_required(VERSION 3.13)
project(FooBarLib VERSION 1.2.3)
if(UNIX AND NOT APPLE)
set(CMAKE_INSTALL_RPATH "$ORIGIN/../lib:$ORIGIN/")
endif()
#------------------------------------------------------------------------------
# Set a default build type if none was specified
if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
message(STATUS "Setting build type to 'Release' as none was specified.")
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Choose the type of build." FORCE)
mark_as_advanced(CMAKE_BUILD_TYPE)
# Set the possible values of build type for cmake-gui
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
#------------------------------------------------------------------------------
# This variable controls the prefix used to generate the following files:
# <export_config_name>ConfigVersion.cmake
# <export_config_name>Config.cmake
# <export_config_name>Targets.cmake
# and it also used to initialize FOOBARLIB_INSTALL_CONFIG_DIR value.
set(export_config_name ${PROJECT_NAME})
#------------------------------------------------------------------------------
if(NOT DEFINED FOOBARLIB_INSTALL_INCLUDE_DIR)
set(FOOBARLIB_INSTALL_INCLUDE_DIR include)
endif()
if(NOT DEFINED FOOBARLIB_INSTALL_BIN_DIR)
set(FOOBARLIB_INSTALL_BIN_DIR bin)
endif()
if(NOT DEFINED FOOBARLIB_INSTALL_LIBRARY_DIR)
set(FOOBARLIB_INSTALL_LIBRARY_DIR lib)
endif()
if(NOT DEFINED FOOBARLIB_INSTALL_CONFIG_DIR)
set(FOOBARLIB_INSTALL_CONFIG_DIR ${FOOBARLIB_INSTALL_LIBRARY_DIR}/cmake/${export_config_name})
endif()
#------------------------------------------------------------------------------
set(headers
foobar.h
)
# Install rule for headers
install(
FILES ${headers}
DESTINATION ${FOOBARLIB_INSTALL_INCLUDE_DIR}
COMPONENT Development
)
#------------------------------------------------------------------------------
add_library(foobar SHARED
foobar.cpp
)
target_include_directories(foobar
PUBLIC
$<BUILD_INTERFACE:${FooBarLib_SOURCE_DIR}>
$<INSTALL_INTERFACE:${FOOBARLIB_INSTALL_INCLUDE_DIR}>
)
install(
TARGETS foobar
EXPORT ${export_config_name}Targets
ARCHIVE DESTINATION ${FOOBARLIB_INSTALL_LIBRARY_DIR} COMPONENT Development
LIBRARY DESTINATION ${FOOBARLIB_INSTALL_LIBRARY_DIR} COMPONENT RuntimeLibraries
RUNTIME DESTINATION ${FOOBARLIB_INSTALL_BIN_DIR} COMPONENT RuntimeLibraries
)
#------------------------------------------------------------------------------
# Configure <export_config_name>ConfigVersion.cmake common to build and install tree
include(CMakePackageConfigHelpers)
set(config_version_file ${PROJECT_BINARY_DIR}/${export_config_name}ConfigVersion.cmake)
write_basic_package_version_file(
${config_version_file}
VERSION "${FooBarLib_VERSION}"
COMPATIBILITY ExactVersion
)
#------------------------------------------------------------------------------
# Export '<export_config_name>Targets.cmake' for a build tree
export(
EXPORT ${PROJECT_NAME}Targets
FILE "${CMAKE_CURRENT_BINARY_DIR}/${export_config_name}Targets.cmake"
)
# Configure '<export_config_name>Config.cmake' for a build tree
set(build_config ${CMAKE_BINARY_DIR}/${export_config_name}Config.cmake)
configure_package_config_file(
${export_config_name}Config.cmake.in
${build_config}
INSTALL_DESTINATION "${PROJECT_BINARY_DIR}"
)
#------------------------------------------------------------------------------
# Export '<export_config_name>Targets.cmake' for an install tree
install(
EXPORT ${export_config_name}Targets
FILE ${export_config_name}Targets.cmake
DESTINATION ${FOOBARLIB_INSTALL_CONFIG_DIR}
)
set(install_config ${PROJECT_BINARY_DIR}/CMakeFiles/${export_config_name}Config.cmake)
configure_package_config_file(
${export_config_name}Config.cmake.in
${install_config}
INSTALL_DESTINATION ${FOOBARLIB_INSTALL_CONFIG_DIR}
)
# Install config files
install(
FILES ${config_version_file} ${install_config}
DESTINATION "${FOOBARLIB_INSTALL_CONFIG_DIR}"
)
#------------------------------------------------------------------------------
# Generate package
set(CPACK_INCLUDE_TOPLEVEL_DIRECTORY 0)
set(CPACK_PACKAGE_NAME "${PROJECT_NAME}")
set(CPACK_PACKAGE_VERSION ${PROJECT_VERSION})
set(CPACK_PACKAGE_FILE_NAME "${CPACK_PACKAGE_NAME}-${CPACK_PACKAGE_VERSION}")
# Setting this variable also impacts the layout of TGZ.
set(CPACK_PACKAGING_INSTALL_PREFIX "/opt")
# Setting CPACK_SOURCE_* and CPACK_GENERATOR allow to have "make package" generates
# the expected archive.
# Disable source generator enabled by default
set(CPACK_SOURCE_TBZ2 OFF CACHE BOOL "Enable to build TBZ2 source packages" FORCE)
set(CPACK_SOURCE_TGZ OFF CACHE BOOL "Enable to build TGZ source packages" FORCE)
set(CPACK_SOURCE_TZ OFF CACHE BOOL "Enable to build TZ source packages" FORCE)
# Select generators
if(UNIX AND NOT APPLE)
set(CPACK_GENERATOR "TGZ")
find_program(RPMBUILD_PATH rpmbuild)
if(RPMBUILD_PATH)
list(APPEND CPACK_GENERATOR "RPM")
endif()
elseif(APPLE)
# ...
endif()
include(CPack)
FooBarLib/FooBarLibConfig.cmake.in
#PACKAGE_INIT#
set(export_config_name "#export_config_name#")
set_and_check(${export_config_name}_TARGETS "${CMAKE_CURRENT_LIST_DIR}/${export_config_name}Targets.cmake")
include(${${export_config_name}_TARGETS})
useFoo/CMakeLists.txt
cmake_minimum_required(VERSION 3.13)
project(useFoo VERSION 1.2.3)
find_package(FooBarLib REQUIRED)
file(GENERATE OUTPUT foobar-gen CONTENT "<TARGET_FILE:foobar>=$<TARGET_FILE:foobar>\n")
get_target_property(foobar_INCLUDE_DIR foobar INTERFACE_INCLUDE_DIRECTORIES)
message(STATUS "foobar_INCLUDE_DIR=${foobar_INCLUDE_DIR}")
get_target_property(imported_location foobar IMPORTED_LOCATION_RELEASE)
get_filename_component(foobar_LIBRARY_DIR ${imported_location} DIRECTORY)
message(STATUS "foobar_LIBRARY_DIR=${foobar_LIBRARY_DIR}")
Output of build.sh
./build.sh
+ set -o pipefail
+++ dirname ./build.sh
++ cd .
++ pwd
+ script_dir=/tmp/stackoverflow-56135785-answer
+ project_name=FooBarLib
+ archive_name=FooBarLib
+ cd /tmp/stackoverflow-56135785-answer
+ rm -rf FooBarLib-build
+ mkdir FooBarLib-build
+ cd FooBarLib-build
+ cmake ../FooBarLib
-- The C compiler identification is GNU 4.8.5
-- The CXX compiler identification is GNU 4.8.5
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Setting build type to 'Release' as none was specified.
-- Configuring done
-- Generating done
-- Build files have been written to: /tmp/stackoverflow-56135785-answer/FooBarLib-build
+ make
Scanning dependencies of target foobar
[ 50%] Building CXX object CMakeFiles/foobar.dir/foobar.cpp.o
[100%] Linking CXX shared library libfoobar.so
[100%] Built target foobar
+ make package
[100%] Built target foobar
Run CPack packaging tool...
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: FooBarLib
CPack: - Install project: FooBarLib
CPack: Create package
CPack: - package: /tmp/stackoverflow-56135785-answer/FooBarLib-build/FooBarLib-1.2.3.tar.gz generated.
CPack: Create package using RPM
CPack: Install projects
CPack: - Run preinstall target for: FooBarLib
CPack: - Install project: FooBarLib
CPack: Create package
-- CPackRPM:Debug: Using CPACK_RPM_ROOTDIR=/tmp/stackoverflow-56135785-answer/FooBarLib-build/_CPack_Packages/Linux/RPM
CPackRPM: Will use GENERATED spec file: /tmp/stackoverflow-56135785-answer/FooBarLib-build/_CPack_Packages/Linux/RPM/SPECS/foobarlib.spec
CPack: - package: /tmp/stackoverflow-56135785-answer/FooBarLib-build/FooBarLib-1.2.3.rpm generated.
+ cd /tmp/stackoverflow-56135785-answer
+ rm -rf FooBarLib-install
+ mkdir FooBarLib-install
+ cd FooBarLib-install
+ tar -xvzf ../FooBarLib-build/FooBarLib-1.2.3.tar.gz
opt/
opt/include/
opt/include/foobar.h
opt/lib/
opt/lib/libfoobar.so
opt/lib/cmake/
opt/lib/cmake/FooBarLib/
opt/lib/cmake/FooBarLib/FooBarLibTargets.cmake
opt/lib/cmake/FooBarLib/FooBarLibTargets-release.cmake
opt/lib/cmake/FooBarLib/FooBarLibConfigVersion.cmake
opt/lib/cmake/FooBarLib/FooBarLibConfig.cmake
+ cd /tmp/stackoverflow-56135785-answer
+ rm -rf useFoo-build
+ mkdir useFoo-build
+ cd useFoo-build
+ cpack_install_prefix=/opt
+ cmake -DFooBarLib_DIR=/tmp/stackoverflow-56135785-answer/FooBarLib-install/opt/lib/cmake/FooBarLib/ ../useFoo
-- The C compiler identification is GNU 4.8.5
-- The CXX compiler identification is GNU 4.8.5
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- foobar_INCLUDE_DIR=/tmp/stackoverflow-56135785-answer/FooBarLib-install/opt/include
-- foobar_LIBRARY_DIR=/tmp/stackoverflow-56135785-answer/FooBarLib-install/opt/lib
-- Configuring done
-- Generating done
-- Build files have been written to: /tmp/stackoverflow-56135785-answer/useFoo-build
+ cat foobar-gen
<TARGET_FILE:foobar>=/tmp/stackoverflow-56135785-answer/FooBarLib-install/opt/lib/libfoobar.so
+ command -v rpmbuild
+ rpm -qlp /tmp/stackoverflow-56135785-answer/FooBarLib-build/FooBarLib-1.2.3.rpm
/opt
/opt/include
/opt/include/foobar.h
/opt/lib
/opt/lib/cmake
/opt/lib/cmake/FooBarLib
/opt/lib/cmake/FooBarLib/FooBarLibConfig.cmake
/opt/lib/cmake/FooBarLib/FooBarLibConfigVersion.cmake
/opt/lib/cmake/FooBarLib/FooBarLibTargets-release.cmake
/opt/lib/cmake/FooBarLib/FooBarLibTargets.cmake
/opt/lib/libfoobar.so
Only after instrumenting the source of cmake itself was I finally able to track this down.
The export and install commands are both capable of generating cmake files for targets.
The export command e.g.:
export(EXPORT foobarLibTargets
FILE "${CMAKE_CURRENT_BINARY_DIR}/foobarLibTargets.cmake")
creates a Targets.cmake referencing the build tree.
The install command e.g.:
install(EXPORT foobarLibTargets
FILE foobarTargets.cmake
DESTINATION lib/cmake)
creates a Targets.cmake referencing the relocatable install location.
This is essentially what #J-Christophe meant by saying that two files were installed and the wrong one was picked up.
I had wrongly assumed that the install command was only responsible for installing files and the export command was only responsible for generating them.
The documentation makes sense now
export(EXPORT [NAMESPACE ] [FILE ])
The file created by this command is specific to the build tree and
should never be installed. See the install(EXPORT) command to export
targets from an installation tree.
The workaround I had previously is no longer necesary.
For reference this was to explicitly set the correct location in the package's Config.cmake as in:
set(FOOBAR_VERSION #VERSION#)
#PACKAGE_INIT#
set_and_check(FOOBAR_INCLUDE_DIR "#PACKAGE_INCLUDE_INSTALL_DIR#")
set_and_check(FOOBAR_LIBRARY "#PACKAGE_LIBRARY_INSTALL_DIR#/libfoobar.so")
set_and_check(FOOBAR_LIBRARY_DIR "#PACKAGE_LIBRARY_INSTALL_DIR#")
include("${CMAKE_CURRENT_LIST_DIR}/foobarLibTargets.cmake")
# workaround - correct absolute path in the above
# this shouldn't be necessary!
set_target_properties(foobar PROPERTIES
IMPORTED_LOCATION_NOCONFIG "#PACKAGE_LIBRARY_INSTALL_DIR#/libfoobar.so"
)
Most of the solutions here are misleading. It's by design working that way: https://github.com/Kitware/CMake/blob/f46c67de0e16293a40bbbade18aa7cee9edb02b0/Source/cmExportInstallFileGenerator.cxx#L184-L192
So if the DESTINATION in the install(EXPORT ...) statement is an absolute path, then hardcode it as absolute path in the exported package config files. Otherwise, generate the path dynamically using _IMPORT_PREFIX.

How to use CMake to create a package that installs to '/etc' and '/var'?

I've got CMake (3.02) installing to a DESTDIR when I invoke:
$ make -C build DESTDIR=$(pwd)/build/rootfs install
This results in a file layout that I'm happy with: binaries are located in the .../build/rootfs/usr/local/bin directory and the init scripts are in .../build/rootfs/etc/init.d. To accomplish that, I used a mixture of relative and absolute paths in my CMakeLists.txt file:
set(CPACK_SET_DESTDIR ON)
...
INCLUDE(CPack)
...
set(ROOTFS_BIN_DIR bin)
set(ROOTFS_ETC_INITD_DIR /etc/init.d)
...
INSTALL(TARGETS myDaemon DESTINATION ${ROOTFS_BIN_DIR})
INSTALL(PROGRAMS myDaemon.sh RENAME myDaemon DESTINATION ${ROOTFS_ETC_INITD_DIR})
With that, I think 'working', I'm trying to create a simple tarball package which will eventually become a debian package (with pre/post install/remove scripts) but when I invoke:
$ make -C build DESTDIR=$(pwd)/build/rootfs package
I'm getting errors because cpack is attempting to write my init scripts to the system's /etc/init.d directory (instead of $(pwd)/build/rootfs/etc/init.d). If I wanted that, then $sudo !! would solve the problem. The error (replaced full path with ...):
CMake Error at .../build_src/cmdServer/cmake_install.cmake:44 (file):
file INSTALL cannot copy file
".../src/cmdServer/cmdServer.sh" to
"/etc/init.d/cmdServer".
I'm not using a lot of CPACK directives: in my top level CMakeLists.txt file I have:
SET(CPACK_SET_DESTDIR ON)
SET(CPACK_GENERATOR TGZ)
INCLUDE(CPack)
How can I package my init scripts correctly?
I've been referencing:
https://cmake.org/pipermail/cmake/2008-April/020833.html
and https://cmake.org/pipermail/cmake/2006-November/011890.html

How can I distribute/install 3rd-party libraries with CMake?

I'm building and distributing an executable which relies on several 3rd-party libraries, most of which are built outside of CMake's buildsystem (though, if it helps, I can add and build them as custom targets in my CMake file).
Here's how I include the libs:
target_link_libraries(MyApp
Lib1_x64
Lib2_x64
etc.}
I'd like to include a CMake directive which installs my executable along with its dependencies. Is there a better way to do this other than calling the install command for every single dependency?
install(DIRECTORY ${DEV_PATH}/Release/ DESTINATION lib FILES_MATCHING PATTERN "libLib1*" PATTERN "*.svn" EXCLUDE PATTERN "*-obj" EXCLUDE)
Is there maybe a way to do this via the add_library command?
This is possible in nowadays with CMake 3.21, which allows you to get a set of dependent libraries via parameter RUNTIME_DEPENDENCY_SET in the install command. Keep in mind, that it will gather all dependent libraries including system, you will need to filter them.
cmake_minimum_required(VERSION 3.21)
# Install your app or library
install(
TARGETS ${PROJECT_NAME}
RUNTIME_DEPENDENCY_SET runtime_deps
)
# Install third-party libraries (exclude system libraries Windows/Unix)
LIST(APPEND pre_exclude_regexes "api-ms-.*")
LIST(APPEND pre_exclude_regexes "ext-ms-.*")
LIST(APPEND post_exclude_regexes ".*WINDOWS[\\/]system32.*")
LIST(APPEND post_exclude_regexes "^/lib" "^/usr" "^/bin")
install(RUNTIME_DEPENDENCY_SET runtime_deps
PRE_EXCLUDE_REGEXES ${pre_exclude_regexes}
POST_EXCLUDE_REGEXES ${post_exclude_regexes}
)
Sorry, no. The add_library command serves the purpose of creating a target in your makefile to build a library. target_link_dependencies just passes the various -L ... -l ... flags to the compiler for a target.
The normal CMake approach is to test for the presence of other libraries or executables on which yours depends, and fail if they are not available.
Handling dependencies is normally left to a package manage such as apt, rpm, etc. It is unwise to build your dependent components as part of your own makefile for a number of reasons:
Your clients might want to use a slightly different version
Any change in how those dependencies build requires you to modify your own build scripts
Your program may work with multiple versions of a dependency, all of which build in different ways.
As someone who uses CMake to build large parts of an entire embedded Linux distribution (see Open webOS), I advise you to keep your scripts focused very tightly on building just one thing.
I am also finding a way to deal this problem today.
and I found :
include(ExternalProject)
ExternalProject_Add()
does it!
here is my sample CMakeLists.txt:
cmake_minimum_required(VERSION 3.13)
project(third-party-build)
include(ExternalProject)
ExternalProject_Add(libuuid
PREFIX libuuid-prefix
# DOWNLOAD_DIR libuuid-download
# SOURCE_DIR libuuid-source
# DOWNLOAD_COMMAND wget xxx.com/xxx.tar.gz && tar zxf xxx.tar.gz
DOWNLOAD_COMMAND tar zxf ${PROJECT_SOURCE_DIR}/libuuid-1.0.3.tar.gz
CONFIGURE_COMMAND <DOWNLOAD_DIR>/libuuid-1.0.3/configure
BUILD_COMMAND ${MAKE}
BUILD_IN_SOURCE 1
INSTALL_COMMAND mkdir -p ${PROJECT_SOURCE_DIR}/lib/ && cp <SOURCE_DIR>/.libs/libuuid.a <SOURCE_DIR>/.libs/libuuid.so <SOURCE_DIR>/.libs/libuuid.so.1 <SOURCE_DIR>/.libs/libuuid.so.1.0.0 ${PROJECT_SOURCE_DIR}/lib/
LOG_DOWNLOAD 1
LOG_BUILD 1
# LOG_INSTALL 1
)