Change Shape of Heatmap Element from Circle to Square? - openlayers-6

I'm a novice in Openlayer6. Who can tell me how to change the rendered elements of the Heatmap.js from a circle to a square? Thanks a lot!

This is currently not configurable, though you can override the createRenderer method of the Heatmap layer to do this (not supported by the api, so it may break in the future).
Here is a working example: https://codesandbox.io/s/heatmap-earthquakes-squares-hdrbs?file=/main.js
These are the needed changes from the orignal function:
diff --git a/src/ol/layer/Heatmap.js b/src/ol/layer/Heatmap.js
index c3e3306c8..2873bf184 100644
--- a/src/ol/layer/Heatmap.js
+++ b/src/ol/layer/Heatmap.js
## -222,8 +222,8 ## class Heatmap extends VectorLayer {
void main(void) {
vec2 texCoord = v_texCoord * 2.0 - vec2(1.0, 1.0);
- float sqRadius = texCoord.x * texCoord.x + texCoord.y * texCoord.y;
- float value = (1.0 - sqrt(sqRadius)) * u_blurSlope;
+ float distance = max(abs(texCoord.x), abs(texCoord.y));
+ float value = (1.0 - distance) * u_blurSlope;
float alpha = smoothstep(0.0, 1.0, value) * v_weight;
gl_FragColor = vec4(alpha, alpha, alpha, alpha);
}`,
## -263,8 +263,8 ## class Heatmap extends VectorLayer {
void main(void) {
vec2 texCoord = v_texCoord * 2.0 - vec2(1.0, 1.0);
- float sqRadius = texCoord.x * texCoord.x + texCoord.y * texCoord.y;
- float value = (1.0 - sqrt(sqRadius)) * u_blurSlope;
+ float distance = max(abs(texCoord.x), abs(texCoord.y));
+ float value = (1.0 - distance) * u_blurSlope;
float alpha = smoothstep(0.0, 1.0, value) * v_weight;
if (alpha < 0.05) {
discard;

Related

how to draw a helix in 3d using fragment shader (shadertoy)

I am relatily new to GLSL.
I want to create a solar system model and use it as a wallpaper (using shadertoy) (Something like this and while i have the planets moving correctly i cant figure out how to do the helix paths that follow those planets.
Here is my code so far
uniform vec2 iResolution;
uniform float iTime;
#define pi 3.141592653589
float circ(vec2 uv, vec2 pos, float rad, float blur) {
return smoothstep(blur, 0., length(-uv + pos)-rad); //draws a circle to the screen
}
float line(vec2 uv, vec3 start, vec3 end, float width) {
vec2 p = uv - start.xy;
vec2 d = end.xy - start.xy;
float l = length(d);
d = normalize(d); //direction
float t = clamp(dot(p, d), 0., l);
return (length(p - d*t)) < width ? 1 : 0.;
}
float helix(vec2 uv, vec3 start, vec3 direction, float width, float length, float angle) {
float delta = iTime / angle;
vec2 p = uv - start.xy;
vec2 d = (normalize(direction) * length).xy;
float l = length(d);
d /= l;
float t = clamp(dot(p, d), 0., l);
return (length(p - d*t)) < width ? 1 : 0.;
}
vec3 rotate(vec3 point, vec3 angle) {
mat3 rot = mat3(
cos(angle.y)*cos(angle.z), cos(angle.z)*sin(angle.x)*sin(angle.y)-cos(angle.x)*sin(angle.z), cos(angle.x)*cos(angle.z)*sin(angle.y)+sin(angle.x)*sin(angle.z),
cos(angle.y)*sin(angle.z), cos(angle.x)*cos(angle.z)+sin(angle.x)*sin(angle.y)*sin(angle.z), -cos(angle.z)*sin(angle.x)+cos(angle.x)*sin(angle.y)*sin(angle.z),
-sin(angle.y), cos(angle.y)*sin(angle.x), cos(angle.x)*cos(angle.y));
return rot * point;
}
void main() {
vec2 uv = fragCoord / iResolution.xy;
float ratio = iResolution.x / iResolution.y;
uv -= .5; //center origin
uv.x = uv.x * ratio;//make screen square
uv /= .3;//zoom
float planetA[5] = float[](0., iTime / 0.241, iTime / 0.6152, iTime, iTime / 1.8809);
vec3 planets[5] = vec3[](
vec3(0.), // sun
vec3(cos(planetA[1]) * .4, sin(planetA[1]) * .4, 0.), // mercury
vec3(cos(planetA[2]) * .7, sin(planetA[2]) * .7, 0.), // venus
vec3(cos(planetA[3]), sin(planetA[3]), 0.), // earth
vec3(cos(planetA[4])*1.5, sin(planetA[4])*1.5, 0.)// mars
);
vec3 planetsC[5] = vec3[](
vec3(0.89, 0.9, 0.45), // sun
vec3(0.54, 0.57, 0.63), // mercury
vec3(0.9, 0.5, 0.2), // venus
vec3(0.2, 0.3, 0.8), // earth
vec3(0.8, 0.3, 0.2)// mars
);
vec3 rotVec = vec3(-pi/4, pi/4, 0.);
fragColor = vec4(0.);
fragColor = mix(fragColor, vec4(1.), line(uv, vec3(0.), rotate(vec3(0., 0., 2.), rotVec), 0.01)); //sun trail
for (int i = 1; i < planets.length(); i++) {
planets[i] = rotate(planets[i], vec3(-pi/4., pi/4., 0.)); //rotate the planet
fragColor = mix(fragColor, vec4(planetsC[i], 1.), helix(uv, planets[i], rotate(vec3(0., 0., 2.), rotVec), 0.01, 2., planetA[i])); //planet trail
}
for (int i = 0; i < planets.length(); i++) { //draws the planets
fragColor = mix(fragColor, vec4(planetsC[i], 1.), circ(uv, planets[i].xy, 0.05, 0.01));
}
}
the helix function is currently only a modified version of the line method but i want it to curve around the suns trail.
Any advice and/or help would be appreciated as i am still learing.
I have tried to convert the helix equation:
x = r * cos(t) y = r * sin(t) z = t but havent gotten it to work
heres the method currently, although it only displays a straigt line:
float helix(vec2 uv, vec3 start, vec3 direction, float width, float length, float angle) {
float delta = iTime / angle;
vec2 p = uv - start.xy;
vec2 d = (normalize(direction) * length).xy;
float l = length(d);
d /= l;
float t = clamp(dot(p, d), 0., l);
return (length(p - d*t)) < width ? 1 : 0.;
}

How to make a 2d shader working with ParallaxBackground node in Godot?

In my game I want to make a scrolling background with moving stars. I am using ParallaxBackground node with ParallaxLayer as a child, and the later has TextureRect child that display a 2d shader for the stars.
Nodes hierarchy:
ParallaxBackground -> StarsLayer -> Stars
Stars is the TextureRect and its rect_size equals the project window size.
Here is the 2d shader that it uses:
shader_type canvas_item;
uniform vec4 bg_color: hint_color;
float rand(vec2 st) {
return fract(sin(dot(st.xy, vec2(12.9898,78.233))) * 43758.5453123);
}
void fragment() {
float size = 100.0;
float prob = 0.9;
vec2 pos = floor(1.0 / size * FRAGCOORD.xy);
float color = 0.0;
float starValue = rand(pos);
if (starValue > prob)
{
vec2 center = size * pos + vec2(size, size) * 0.5;
float t = 0.9 + 0.2 * sin(TIME * 8.0 + (starValue - prob) / (1.0 - prob) * 45.0);
color = 1.0 - distance(FRAGCOORD.xy, center) / (0.5 * size);
color = color * t / (abs(FRAGCOORD.y - center.y)) * t / (abs(FRAGCOORD.x - center.x));
}
else if (rand(SCREEN_UV.xy / 20.0) > 0.996)
{
float r = rand(SCREEN_UV.xy);
color = r * (0.85 * sin(TIME * (r * 5.0) + 720.0 * r) + 0.95);
}
COLOR = vec4(vec3(color),1.0) + bg_color;
}
Here is ParallaxBackground script:
extends ParallaxBackground
onready var stars_layer = $StarsLayer
var bg_offset = 0.0
func _ready():
stars_layer.motion_mirroring = Vector2(0, Helpers.WINDOW_SIZE.y)
func _process(delta):
bg_offset += 30 * delta
scroll_offset = Vector2(0, bg_offset)
The problem is that the stars are being showed but not moving at all.
Use motion_offset instead of scroll_offset
func _process(delta):
motion_offset += 30 * delta

move lat long by meters in direction and distance

Any idea how make it? My code looks like this,but it dont work. In attached photo where point 0 is center of circle and rest are circle points(every 45 degress). An example we see that points don't make circle
Look point 0 is center of circle
I pasting my code here:
static float[] RotateVector(float[] v, float degrees)
{
float sin = (float)Math.Sin(degrees * 0.0174553294f);
float cos = (float)Math.Cos(degrees * 0.0174553294f);
float tx = v[0];
float ty = v[1];
return new float[] { (cos * tx) - (sin * ty), (sin * tx) + (cos * ty) };
}
static void Main(string[] args)
{
float lat = 53.1324886f;
float lon = 23.1688403f;
float R = 6378137;
float distance = 100;
float dn = 0;
float de = 1;
float[] rotation = RotateVector(new float[] { dn, de }, 180);
rotation[0] = rotation[0] * distance;
rotation[1] = rotation[1] * distance;
float dLat = rotation[0] / R;
float dLon = rotation[1] / (R * (float)Math.Cos(Math.PI * lat / 180));
float latO = lat + dLat * 180 / (float)Math.PI;
float lonO = lon + dLon * 180 / (float)Math.PI;
Console.WriteLine(latO+" "+ lonO);
Console.ReadKey();
}
Website with map don't work correctly. On google maps code work fine.

Path Tracing - Generate Camera Rays with a Left Handed coordinate system

Been having some issues implementing a camera for my renderer. As the question states,I would like to know the necessary steps to generate such a camera.With field of view and aspect ratio included.Its important that the Coordinate system be left handed such that -z pushes the camera away from the screen(as I understand it).I have tried looking online but most of the implementations are incomplete or have failed me.Any help is appreciated.Thank You.
I had trouble with this and took a long time to figure out. Here is the code for camera class.
#ifndef CAMERA_H_
#define CAMERA_H_
#include "common.h"
struct Camera {
Vec3fa position, direction;
float fovDist, aspectRatio;
double imgWidth, imgHeight;
Mat4 camMatrix;
Camera(Vec3fa pos, Vec3fa cRot, Vec3fa cDir, float cfov, int width, int height) {
position = pos;
aspectRatio = width / (float)height;
imgWidth = width;
imgHeight = height;
Vec3fa angle = Vec3fa(cRot.x, cRot.y, -cRot.z);
camMatrix.setRotationRadians(angle * M_PI / 180.0f);
direction = Vec3fa(0.0f, 0.0f, -1.0f);
camMatrix.rotateVect(direction);
fovDist = 2.0f * tan(M_PI * 0.5f * cfov / 180.0);
}
Vec3fa getRayDirection(float x, float y) {
Vec3fa delta = Vec3fa((x-0.5f) * fovDist * aspectRatio, (y-0.5f) * fovDist, 0.0f);
camMatrix.rotateVect(delta);
return (direction + delta);
}
};
#endif
Incase if you need the rotateVect() code in the Mat4 class
void Mat4::rotateVect(Vector3& vect) const
{
Vector3 tmp = vect;
vect.x = tmp.x * (*this)[0] + tmp.y * (*this)[4] + tmp.z * (*this)[8];
vect.y = tmp.x * (*this)[1] + tmp.y * (*this)[5] + tmp.z * (*this)[9];
vect.z = tmp.x * (*this)[2] + tmp.y * (*this)[6] + tmp.z * (*this)[10];
}
Here is our setRotationRadians code
void Mat4::setRotationRadians(Vector3 rotation)
{
const float cr = cos(rotation.x);
const float sr = sin(rotation.x);
const float cp = cos(rotation.y);
const float sp = sin(rotation.y);
const float cy = cos(rotation.z);
const float sy = sin(rotation.z);
(*this)[0] = (cp * cy);
(*this)[1] = (cp * sy);
(*this)[2] = (-sp);
const float srsp = sr * sp;
const float crsp = cr * sp;
(*this)[4] = (srsp * cy - cr * sy);
(*this)[5] = (srsp * sy + cr * cy);
(*this)[6] = (sr * cp);
(*this)[8] = (crsp * cy + sr * sy);
(*this)[9] = (crsp * sy - sr * cy);
(*this)[10] = (cr * cp);
}

What is the most optimized way of creating a ray tracer?

Currently, I am working with a ray tracer that takes an iterative approach towards developing the scenes. My goal is to turn it into a recursive ray tracer.
At the moment, I have a ray tracer defined to do the following operation to create the bitmap it is stored in:
int WIDTH = 640;
int HEIGHT = 640;
BMP Image(WIDTH, HEIGHT); // create new bitmap
// Slightly shoot rays left of right camera direction
double xAMT, yAMT;
*/
Color blue(0.1, 0.61, 0.76, 0);
for (int x = 0; x < WIDTH; x++) {
for (int y = 0; y < HEIGHT; y++) {
if (WIDTH > HEIGHT) {
xAMT = ((x + 0.5) / WIDTH) * aspectRatio - (((WIDTH - HEIGHT) / (double)HEIGHT) / 2);
yAMT = ((HEIGHT - y) + 0.5) / HEIGHT;
}
else if (HEIGHT > WIDTH) {
xAMT = (x + 0.5) / WIDTH;
yAMT = (((HEIGHT - y) + 0.5) / HEIGHT) / aspectRatio - (((HEIGHT - WIDTH) / (double)WIDTH) / 2);
}
else {
xAMT = (x + 0.5) / WIDTH;
yAMT = ((HEIGHT - y) + 0.5) / HEIGHT;
}
..... // calculate intersections, shading, reflectiveness.... etc
Image.setPixel(x, y, blue); // this is here just as an example
}
}
Is there another approach to calculating the reflective and refractive child rays outside the double for-loop?
Are the for-loops necessary? // yes because of the bitmap?
What approaches can be taken to minimize/optimize an iterative ray tracer?