I was proofreading a README file and noticed inconsistent spelling of a phrase spelled two ways: "command line" and "command-line". I went looking for a conclusive answer and did not find much (see this archived exchange and this Microsoft style guide page). I concluded that it probably doesn't matter and that "command line" seems to be more common, but now I'm curious; has anyone else run into this issue? If you're an industry professional that documents your code, were you ever provided an answer?
Side note: I was debating whether or not to ask this here, as it's certainly more of a code-adjacent question, but considering that if you're writing code, you should be writing documentation as well, I figured it would fit the criteria of "a practical, answerable problem that is unique to software development" stated here. If this is not the case, do let me know-- thanks!
Both "command line" and "command-line" are acceptable and widely used in today's writing. When used as an adjective before a noun, use "command-line" (with a hyphen) in your writing to help prevent confusion. For example, in the sentence "Make sure you entered the correct command-line parameter." the word "command-line" is describing a type of parameter.
When used as a noun, use "command line" (with no hyphen) in your writing. For example, in the sentence "Open the command line." the use of "command line" is used as a noun.
Command line when using it as a noun: "Type yo in the command line."
Command-line when using it as a compound adjective: "The command-line usage of this program..."
In a customer object, we found an SWC statement that our parser chokes on.
IF NOT ( pyparaid IS INITIAL OR dataset_exp IS INITIAL ).
swc_set_element container 'DATASET' dataset_exp+10.
ENDIF.
Although this page seems to imply that they are well known in the ABAP world, I cannot find a page where they are documented officially. (Similar to the ABAP keyword documentation).
Are these macros considered part of the language? In other words, if they are not covered, would you consider a parser incomplete? Please point me to their documentation.
Please try searching for yourself next time. The first hit when googling for "site:help.sap.com swc_set_element" would have lead you straight to the reference.
Yes, a parser that is unable to process macros is incomplete. You have been warned about that half a year ago... :-)
In Microsoft Word 2013 VBA, you can call GetSpellingSuggestions on a Range that includes a spelling error to get a collection of (a) what the spelling error is and (b) what the proposed suggestions are. Is there anything equivalent for grammatical errors? I called GetSpellingSuggestions on a Range with only a grammatical error and got back wdSpellingCorrect with no suggestions.
This post from 2004 says Word doesn't provide that information to VBA, but I'm wondering if Microsoft has added one since then. I've looked on MSDN and SO and haven't found an answer. CheckGrammar won't work for me since I'm rolling my own UI for the checker. Thanks!
Well, looks like the answer is no :/ . Posting this to get the question off the Unanswered lists. If you happen across this and have some information, please post another answer! Thanks!
Brian Kernighan was asked this question in a recent interview. I'll quote his reply:
Brian: I'm torn on this. Error-handling code tends to be bulky and very uninteresting and uninstructive, so it often gets in the way of learning and understanding the basic language constructs. At the same time, it's important to remind programmers that errors do happen and that their code has to be able to cope with errors.
My personal preference is to pretty much ignore error handling in the earlier parts of a tutorial, other than to mention that errors can happen, and similarly to ignore errors in most examples in reference manuals unless the point of some section is errors. But this can reinforce the unconscious belief that it's safe to ignore errors, which is always a bad idea.
I often leave off error handling in code examples here and on my own blog, and I've noticed that this is the general trend on Stack Overflow. Are we reinforcing bad habits? Should we spend more time polishing examples with error handling, or does it just get in the way of illustrating the point?
I think it might be an improvement if when posting example code we at least put comments in that say you should put error handling code in at certain spots. This might at least help somebody using that code to remember that they need to have error handling. This will keep the extra code for error handling out but will still reinforce the idea that there needs to be error handling code.
Any provided example code will be copy-pasted into production code at least once, so be at your best when writing it.
Beyond the question of cluttering the code when you're demonstrating a coding point, I think the question becomes, how do you choose to handle the error in your example code?
That is to say, what do you do ? What's fatal for one application is non-fatal for another. e.g. if I can't retrieve some info from a webserver (be it a 404 error or a non-responsive server) that may be fatal if you can't do anything without that data. But if that data is supplementary to what you're doing, then perhaps you can live without it.
So the above may point to simply logging the error. That's better than ignoring the error completely. But I think often the difficulty is in knowing how/when (and when not) to recover from an error. Perhaps that's a whole new tutorial in itself.
Examples should be illustrative. They should always show the point being made clearly with as little distraction as possible. Here's a meta-example:
Say we want to read a number from a file, add 3, and print it to the console. We'll need to demonstrate a few things.
infile = file("example.txt")
content = infile.read()
infile.close()
num = int(content)
print (3 + num)
wordy, but correct, except there are a few things that could go wrong. First, what if the file didn't exist? What if it does exist but doesn't contain a number?
So we show how the errors would be handled.
try:
infile = file("example.txt")
content = infile.read()
infile.close()
num = int(content)
print (3 + num)
except ValueError:
print "Oops, the file didn't have a number."
except IOError:
print "Oops, couldn't open the file for some reason."
After a few iterations of showing how to handle the errors raised by, in this case, file handling and parsing. Of course we'd like to show a more pythonic way of expressing the try clause. Now we drop the error handling, cause that's not what we're demonstrating.
First lets eliminate the unneeded extra variables.
infile = file("example.txt")
print (3 + int(infile.read()))
infile.close()
Since we're not writing to it, nor is it an expensive resource on a long-running process, it's actually safe to leave it open. It will closewhen the program terminates.
print ( 3 + int(file("example.txt").read()))
However, some might argue that's a bad habit and there's a nicer way to handle that issue. We can use a context to make it a little clearer. of course we would explain that a file will close automatically at the end of a with block.
with file("example.txt") as infile:
print (3 + int(infile.read()))
And then, now that we've expressed everything we wanted to, we show a complete example at the very end of the section. Also, we'll add some documentation.
# Open a file "example.txt", read a number out of it, add 3 to it and print
# it to the console.
try:
with file("example.txt") as infile:
print (3 + int(infile.read()))
except ValueError: # in case int() can't understand what's in the file
print "Oops, the file didn't have a number."
except IOError: # in case the file didn't exist.
print "Oops, couldn't open the file for some reason."
This is actually the way I usually see guides expressed, and it works very well. I usually get frustrated when any part is missing.
I think the solution is somewhere in the middle. If you are defining a function to find element 'x' in list 'y', you do something like this:
function a(x,y)
{
assert(isvalid(x))
assert(isvalid(y))
logic()
}
There's no need to be explicit about what makes an input valid, just that the reader should know that the logic assumes valid inputs.
Not often I disagree with BWK, but I think beginner examples especially should show error handling code, as this is something that beginners have great difficulty with. More experienced programmers can take the error handling as read.
One idea I had would be to include a line like the following in your example code somewhere:
DONT_FORGET_TO_ADD_ERROR_CHECKING(); // You have been warned!
All this does is prevent the code compiling "off the bat" for anyone who just blindly copies and pastes it (since obviously DONT_FORGET_TO_ADD_ERROR_CHECKING() is not defined anywhere). But it's also a hassle, and might be deemed rude.
I would say that it depends on the context. In a blog entry or text book, I would focus on the code to perform or demonstrate the desired functionality. I would probably give the obligatory nod to error handling, perhaps, even put in a check but stub the code with an ellipsis. In teaching, you can introduce a lot of confusion by including too much code that doesn't focus directly on the subject at hand. In SO, in particular, shorter (but complete) answers seem to be preferred so handling errors with "a wave of the hand" may be more appropriate in this context as well.
That said, if I made a code sample available for download, I would generally make it as complete as possible and include reasonable error handling. The idea here is that for learning the person can always go back to the tutorial/blog and use that to help understand the code as actually implemented.
In my personal experience, this is one of the issues that I have with how TDD is typically presented -- usually you only see the tests developed to check that the code succeeds in the main path of execution. I would like to see more TDD tutorials include developing tests for alternate (error) paths. This aspect of testing, I think, is the hardest to get a handle on since it requires you to think, not of what should happen, but of all the things that could go wrong.
Error handling is a paradigm by itself; it normally shouldn't be included in examples since it seriously corrupts the point that the author tries to come across with.
If the author wants to pass knowledge about error handling in a specific domain or language then I would prefer as a reader to have a different chapter that outlines all the dominant paradigms of error handling and how this affects the rest of the chapters.
I don't think error handling should be in the example if it obscures the logic. But some error handling is just the idiom of doing some things, and in theese case include it.
Also if pointing out that error handling needs to be added. For the love of deity also point out what errors needs to be handled.
This is the most frustrating part of reading some examples. If you don't know what you are doing (which we have to assume of the reader of the example...) you don't know what errors to look for either. Which turns the "add error handling" suggestion into "this example is useless".
One approach I've seen, notably in Advanced Programming in the UNIX Environment and UNIX Network Programming is to wrap calls with error checking code and then use the wrappers in the example code. For instance:
ssiz_t Recv(...)
{
ssize_t result;
result = recv(...);
/* error checking in full */
}
then, in calling code:
Recv(...);
That way you get to show error handling while allowing the flow of calling code to be clear and concise.
No, unless the purpose of the example is to demonstrate an aspect of exception handling. This is a pet peeve of mine -- many examples try to demonstrate best practices and end up obscuring and complicating the example. I see this all the time in code examples that start by defining a bunch of interfaces and inheritance chains that aren't necessary for the example. A prime example of over complicating was a hands-on lab I did at TechEd last year. The lab was on Linq, but the sample code I was directed to write created a multi-tier application for no purpose.
Examples should start with the simplest possible code that demonstrates the point, then progress into real-world usage and best practices.
As an aside, when I've asked for code samples from job candidates almost all of them are careful to demonstrate their knowledge of exception handling:
public void DoSomethingCool()
{
try
{
// do something cool
}
catch (Exception ex)
{
throw ex;
}
}
I've received hundreds of lines of code with every method like this. I've started to award bonus points for those that use throw; instead of throw ex;
Sample code need not include error handling but it should otherwise demonstrate proper secure coding techniques. Many web code snippets violate the OWASP Top ten.
Theoretically, the end user should never see internal errors. But in practice, theory and practice differ. So the question is what to show the end user. Now, for the totally non-technical user, you want to show as little as possible ("click here to submit a bug report" kind of things), but for more advanced users, they will want to know if there is a work around, if it's been known for a while, etc. So you want to include some sort of info about what's wrong as well.
The classic way to do this is either an assert with a filename:line-number or a stack trace with the same. Now this is good for the developer because it points him right at the problem; however it has some significant downsides for the user, particularly that it's very cryptic (e.g. unfriendly) and code changes change the error message (Googling for the error only works for this version).
I have a program that I'm planning on writing where I want to address these issues. What I want is a way to attach a unique identity to every assert in such a way that editing the code around the assert won't alter it. (For example, if I cut/paste it to another file, I want the same information to be displayed) Any ideas?
One tack I'm thinking of is to have an enumeration for the errors, but how to make sure that they are never used in more than one place?
(Note: For this question, I'm only looking at errors that are caused by coding errors. Not things that could legitimately happen like bad input. OTOH those errors may be of some interest to the community at large.)
(Note 2: The program in question would be a command line app running on the user's system. But again, that's just my situation.)
(Note 3: the target language is D and I'm very willing to dive into meta-programming. Answers for other languages more than welcome!)
(note 4: I explicitly want to NOT use actual code locations but rather some kind of symbolic names for the errors. This is because if code is altered in practically any way, code locations change.)
Interesting question. A solution I have used several times is this: If it's a fatal error (non-fatal errors should give the user a chance to correct the input, for example), we generate a file with a lot of relevant information: The request variables, headers, internal configuration information and a full backtrace for later debugging. We store this in a file with a generated unique filename (and with the time as a prefix).
For the user, we present a page which explains that an unrecoverable error has occurred, and ask that they include the filename as a reference if they would like to report the bug. A lot easier to debug with all this information from the context of the offending request.
In PHP the debug_backtrace() function is very useful for this. I'm sure there's an equivalent for your platform.
Also remember to send relevant http headers: Probably: HTTP/1.1 500 Internal Server Error
Given a sensible format of the error report file, it's also possible to analyze the errors that users have not reported.
Write a script to grep your entire source tree for uses of these error codes, and then complain if there are duplicates. Run that script as part of your unit tests.
I know nothing about your target language, but this is an interesting question that I have given some thought to and I wanted to add my two cents.
My feeling has always been that messages for hard errors and internal errors should be as useful as possible for the developer to identify the problem & fix it quickly. Most users won't even look at this error message, but the highly sophisticated end users (tech support people perhaps) will often get a pretty good idea what the problem is and even come up with novel workarounds by looking at highly detailed error messages. The key is to make those error messages detailed without being cryptic, and this is more an art than a science.
An example from a Windows program that uses an out-of-proc COM server. If the main program tries to instantiate an object from the COM server and fails with the error message:
"WARNING: Unable to Instantiate
UtilityObject: Error 'Class Not
Registered' in 'CoCreateInstance'"
99% of users will see this and think it is written in Greek. A tech support person may quickly realize that they need ro re-register the COM server. And the developer will know exactly what went wrong.
In order to associate some contextual information with the assertion, in my C++ code I will often use a simple string with the name of the method, or something else that makes it clear where the error occured (I apologize for answering in a language you didn't ask about):
int someFunction()
{
static const std::string loc = "someFunction";
: :
if( somethingWentWrong )
{
WarningMessage(loc.c_str(), "Unable to Instantiate UtilityObject: Error 'Class Not
Registered' in 'CoCreateInstance);
}
}
...which generates:
WARNING [someFunction] : Unable to
Instantiate UtilityObject: Error
'Class Not Registered' in
'CoCreateInstance