So, the query is simple but i am facing issues in implementing the Sql logic. Heres the query suppose i have records like
Phoneno Company Date Amount
83838 xyz 20210901 100
87337 abc 20210902 500
47473 cde 20210903 600
Output expected is past 7 days progress as running avg of amount for each date (current date n 6 days before)
Date amount avg
20210901 100 100
20210902 500 300
20210903 600 400
I tried
Select date, amount, select
avg(lg) from (
Select case when lag(amount)
Over (order by NULL) IS NULL
THEN AMOUNT
ELSE
lag(amount)
Over (order by NULL) END AS LG)
From table
WHERE DATE>=t.date-7) as avg
From table t;
But i am getting wrong avg values. Could anyone please help?
Note: Ive tried without lag too it results the wrong avgs too
You could use a self join to group the dates
select distinct
a.dt,
b.dt as preceding_dt, --just for QA purpose
a.amt,
b.amt as preceding_amt,--just for QA purpose
avg(b.amt) over (partition by a.dt) as avg_amt
from t a
join t b on a.dt-b.dt between 0 and 6
group by a.dt, b.dt, a.amt, b.amt; --to dedupe the data after the join
If you want to make your correlated subquery approach work, you don't really need the lag.
select dt,
amt,
(select avg(b.amt) from t b where a.dt-b.dt between 0 and 6) as avg_lg
from t a;
If you don't have multiple rows per date, this gets even simpler
select dt,
amt,
avg(amt) over (order by dt rows between 6 preceding and current row) as avg_lg
from t;
Also the condition DATE>=t.date-7 you used is left open on one side meaning it will qualify a lot of dates that shouldn't have been qualified.
DEMO
You can use analytical function with the windowing clause to get your results:
SELECT DISTINCT BillingDate,
AVG(amount) OVER (ORDER BY BillingDate
RANGE BETWEEN TO_DSINTERVAL('7 00:00:00') PRECEDING
AND TO_DSINTERVAL('0 00:00:00') FOLLOWING) AS RUNNING_AVG
FROM accounts
ORDER BY BillingDate;
Here is a DBFiddle showing the query in action (LINK)
Related
I have a postgresql table:
create table orders
(
id int,
cost int,
time timestamp
);
How to write a PostgreSQL query to find the first time when sum(cost) is greater than 200?
For example:
id cost time
------------------
1 120 2019-10-10
2 50 2019-11-11
3 80 2019-12-12
4 60 2019-12-16
The first time sum(cost) greater than 200 is 2019-12-12.
This is a variation of Nick's answer (which would be correct with an ORDER BY). However, this version is more efficient:
select d.*
from (select d.*,
sum(d.cost) over (order by d.time) as running_cost
from d
) d
where running_cost - cost < 200 and
running_cost >= 200;
Note that this does not require an order by in the outer query to work correctly.
There is also almost a way to solve this without using a subquery:
select o.*
from orders o
order by (sum(cost) over (order by time) >= 200) desc,
time asc
limit 1;
The only issue is that this will return a row if no row matches the condition. You could get around this by using a subquery in the limit:
limit (case when (select sum(cost) from orders) >= 400 then 1 else 0 end)
But then a subquery would be needed.
For PostgreSQL, you can get this result by using a CTE to calculate the SUM of cost for rows up to and including the current one, and then selecting the first row which has total cost >= 200:
WITH CTE AS (
SELECT time,
SUM(cost) OVER (ORDER BY time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total
FROM data
)
SELECT *
FROM CTE
WHERE total >= 200
ORDER BY total
LIMIT 1
Output:
time total
2019-12-12 250
Demo on SQLFiddle
I'm working on outputting some data and I want to pull the daily average of some numbers.
As you can see, what I want to do is count the amount of rows received/results(think the row ID) and then divide it against the day value to make the daily average.(30/1) , (64/2) etc I've tried everything, but I keep running into a wall with this.
As it stands, I'm guessing to make this work a sub query of some sort is needed. I just don't know how to get the day(Row id 1,2,3,4 etc) to use for the division.
SELECT calendar_date, SUM(NY_dayscore * cAttendance)
FROM vw_Appointments
WHERE status = 'Confirmed'
Group by calendar_date
Attempted count with distinct, to no avail
SUM(NY_dayscore * cAttendance) ) / count(distinct calendar_date)
My original code is long and cba to post it all. So just attempting to post a small sample code to get guidance on the issue.
In SQL Server 2012+, you would use the cumulative average:
select calendar_date, sum(NY_dayscore * cAttendance),
avg(sum(NY_dayscore * cAttendance)) over (order by calendar_date) as running_average
from vw_appointments a
where status = 'Confirmed'
group by calendar_date
order by calendar_date;
In SQL Server 2008, this is more difficult:
with a as (
select calendar_date, sum(NY_dayscore * cAttendance) as showed
from vw_appointments a
where status = 'Confirmed'
group by calendar_date
)
select a.*, a2.running_average
from a outer apply
(select avg(showed) as running_average
from a a2
where a2.calendar_date <= a.calendar_date
) a2
order by calendar_date;
Is it ROW_NUMBER() that you are missing?
SELECT
calendar_date,
SUM(NY_dayscore * cAttendance) / (ROW_NUMBER() OVER (ORDER BY calendar_date ASC)) AS average
FROM vw_Appointments
WHERE status = 'Confirmed'
GROUP BY calendar_date
ORDER BY calendar_date
I think you need sum(showed) over (..)/row_number() over (..)
WITH Table1(date, showed) AS
(
SELECT '2019-01-02', 30 UNION ALL
SELECT '2019-01-03', 34 UNION ALL
SELECT '2019-01-03', 41 UNION ALL
SELECT '2019-01-04', 48
)
SELECT date,
sum(showed) over (order by date) /
row_number() over (order by date)
as daily_average
FROM Table1
GROUP BY showed, date;
date daily_average
2019-01-02 30
2019-01-03 52
2019-01-03 35
2019-01-04 38
Demo
I have user logins by date. My requirement is to track the number of users that have been logged in during the past 90 days window.
I am new to both SQL in general and Teradata specifically and I can't get the window functionality to work as I need.
I need the following result, where ACTIVE is a count of the unique USER_IDs that appear in the previous 90 day window the DATE.
DATES ACTIVE_IN_WINDOW
12/06/2018 20
13/06/2018 45
14/06/2018 65
15/06/2018 73
17/06/2018 24
18/06/2018 87
19/06/2018 34
20/06/2018 51
Currently my script is as follows.
It is this line here that I cant get right
COUNT ( USER_ID) OVER (PARTITION BY USER_ID ORDER BY EVT_DT ROWS BETWEEN 90 PRECEDING AND 0 FOLLOWING)
I suspect I need a different set of functions to make this work.
SELECT b.DATES , a.ACTIVE_IN_WINDOW
FROM
(
SELECT
CAST(CALENDAR_DATE AS DATE) AS DATES FROM SYS_CALENDAR.CALENDAR
WHERE DATES BETWEEN ADD_MONTHS(CURRENT_DATE, - 10) AND CURRENT_DATE
) b
LEFT JOIN
(
SELECT USER_ID , EVT_DT
, COUNT ( USER_ID) OVER (PARTITION BY USER_ID ORDER BY EVT_DT ROWS BETWEEN 90 PRECEDING AND 0 FOLLOWING) AS ACTIVE_IN_WINDOW
FROM ENV0.R_ONBOARDING
) a
ON a.EVT_DT = b.DATES
ORDER BY b.DATES
Thank you for any assistance.
The logic is similar to Gordon', but a non-equi-Join instead of a Correlated Scalar Subquery is usually more efficient on Teradata:
SELECT b.DATES , Count(DISTINCT USER_ID)
FROM
(
SELECT CALENDAR_DATE AS DATES
FROM SYS_CALENDAR.CALENDAR
WHERE DATES BETWEEN Add_Months(Current_Date, - 10) AND Current_Date
) b
LEFT JOIN
( -- apply DISTINCT before aggregation to reduce intermediate spool
SELECT DISTINCT USER_ID, EVT_DT
FROM ENV0.R_ONBOARDING
) AS a
ON a.EVT_DT BETWEEN Add_Months(b.DATES,-3) AND b.DATES
GROUP BY 1
ORDER BY 1
Of course this will require a large spool and much CPU.
Edit:
Switching to weeks reduces the overhead, I'm using dates instead of week numbers (it's easier to modify for other ranges):
SELECT b.Week , Count(DISTINCT USER_ID)
FROM
( -- Return only Mondays instead of DISTINCT over all days
SELECT calendar_date AS Week
FROM SYS_CALENDAR.CALENDAR
WHERE CALENDAR_DATE BETWEEN Add_Months(Current_Date, -9) AND Current_Date
AND day_of_week = 2 -- 2 = Monday
) b
LEFT JOIN
(
SELECT DISTINCT USER_ID,
-- td_monday returns the previous Monday, but we need the following monday
-- covers the previous Tuesday up to the current Monday
Td_Monday(EVT_DT+6) AS PERIOD_WEEK
FROM ENV0.R_ONBOARDING
-- You should add another condition to limit the actually covered date range, e.g.
-- where EVT_DT BETWEEN Add_Months(b.DATES,-13) AND b.DATES
) AS a
ON a.PERIOD_WEEK BETWEEN b.Week-(12*7) AND b.Week
GROUP BY 1
ORDER BY 1
Explain should duplicate the calendar as preparation for the product join, if not you might need to materialize the dates in a Volatile Table. Better don't use sys_calendar, there are no statistics, e.g. optimizer doesn't know about how many days per week/month/year, etc. Check your system, there should be a calendar table designed for you company needs (with stats on all columns)
If your data is not too big, a subquery might be the simplest method:
SELECT c.dte,
(SELECT COUNT(DISTINCT o.USER_ID)
FROM ENV0.R_ONBOARDING o
WHERE o.EVT_DT > ADD_MONTHS(dte, -3) AND
o.EVT_DT <= dte
) as three_month_count
FROM (SELECT CAST(CALENDAR_DATE AS DATE) AS dte
FROM SYS_CALENDAR.CALENDAR
WHERE CALENDAR_DATE BETWEEN ADD_MONTHS(CURRENT_DATE, - 10) AND CURRENT_DATE
) c;
You might want to start on a shorter timeframe then 3 months to see how the query performs.
I need help in business days calculation.
I've two tables
1) One table ACTUAL_TABLE containing order date and contact date with timestamp datatypes.
2) The second table BUSINESS_DATES has each of the calendar dates listed and has a flag to indicate weekend days.
using these two tables, I need to ensure business days and not calendar days (which is the current logic) is calculated between these two fields.
My thought process was to first get a range of dates by comparing ORDER_DATE with TABLE_DATE field and then do a similar comparison of CONTACT_DATE to TABLE_DATE field. This would get me a range from the BUSINESS_DATES table which I can then use to calculate count of days, sum(Holiday_WKND_Flag) fields making the result look like:
Order# | Count(*) As DAYS | SUM(WEEKEND DATES)
100 | 25 | 8
However this only works when I use a specific order number and cant' bring all order numbers in a sub query.
My Query:
SELECT SUM(Holiday_WKND_Flag), COUNT(*) FROM
(
SELECT
* FROM
BUSINESS_DATES
WHERE BUSINESS.Business BETWEEN (SELECT ORDER_DATE FROM ACTUAL_TABLE
WHERE ORDER# = '100'
)
AND
(SELECT CONTACT_DATE FROM ACTUAL_TABLE
WHERE ORDER# = '100'
)
TEMP
Uploading the table structure for your reference.
SELECT ORDER#, SUM(Holiday_WKND_Flag), COUNT(*)
FROM business_dates bd
INNER JOIN actual_table at ON bd.table_date BETWEEN at.order_date AND at.contact_date
GROUP BY ORDER#
Instead of joining on a BETWEEN (which always results in a bad Product Join) followed by a COUNT you better assign a bussines day number to each date (in best case this is calculated only once and added as a column to your calendar table). Then it's two Equi-Joins and no aggregation needed:
WITH cte AS
(
SELECT
Cast(table_date AS DATE) AS table_date,
-- assign a consecutive number to each busines day, i.e. not increased during weekends, etc.
Sum(CASE WHEN Holiday_WKND_Flag = 1 THEN 0 ELSE 1 end)
Over (ORDER BY table_date
ROWS Unbounded Preceding) AS business_day_nbr
FROM business_dates
)
SELECT ORDER#,
Cast(t.contact_date AS DATE) - Cast(t.order_date AS DATE) AS #_of_days
b2.business_day_nbr - b1.business_day_nbr AS #_of_business_days
FROM actual_table AS t
JOIN cte AS b1
ON Cast(t.order_date AS DATE) = b1.table_date
JOIN cte AS b2
ON Cast(t.contact_date AS DATE) = b2.table_date
Btw, why are table_date and order_date timestamp instead of a date?
Porting from Oracle?
You can use this query. Hope it helps
select order#,
order_date,
contact_date,
(select count(1)
from business_dates_table
where table_date between a.order_date and a.contact_date
and holiday_wknd_flag = 0
) business_days
from actual_table a
I've been mulling on this problem for a couple of hours now with no luck, so I though people on SO might be able to help :)
I have a table with data regarding processing volumes at stores. The first three columns shown below can be queried from that table. What I'm trying to do is to add a 4th column that's basically a flag regarding if a store has processed >=$150, and if so, will display the corresponding date. The way this works is the first instance where the store has surpassed $150 is the date that gets displayed. Subsequent processing volumes don't count after the the first instance the activated date is hit. For example, for store 4, there's just one instance of the activated date.
store_id sales_volume date activated_date
----------------------------------------------------
2 5 03/14/2012
2 125 05/21/2012
2 30 11/01/2012 11/01/2012
3 100 02/06/2012
3 140 12/22/2012 12/22/2012
4 300 10/15/2012 10/15/2012
4 450 11/25/2012
5 100 12/03/2012
Any insights as to how to build out this fourth column? Thanks in advance!
The solution start by calculating the cumulative sales. Then, you want the activation date only when the cumulative sales first pass through the $150 level. This happens when adding the current sales amount pushes the cumulative amount over the threshold. The following case expression handles this.
select t.store_id, t.sales_volume, t.date,
(case when 150 > cumesales - t.sales_volume and 150 <= cumesales
then date
end) as ActivationDate
from (select t.*,
sum(sales_volume) over (partition by store_id order by date) as cumesales
from t
) t
If you have an older version of Postgres that does not support cumulative sum, you can get the cumulative sales with a subquery like:
(select sum(sales_volume) from t t2 where t2.store_id = t.store_id and t2.date <= t.date) as cumesales
Variant 1
You can LEFT JOIN to a table that calculates the first date surpassing the 150 $ limit per store:
SELECT t.*, b.activated_date
FROM tbl t
LEFT JOIN (
SELECT store_id, min(thedate) AS activated_date
FROM (
SELECT store_id, thedate
,sum(sales_volume) OVER (PARTITION BY store_id
ORDER BY thedate) AS running_sum
FROM tbl
) a
WHERE running_sum >= 150
GROUP BY 1
) b ON t.store_id = b.store_id AND t.thedate = b.activated_date
ORDER BY t.store_id, t.thedate;
The calculation of the the first day has to be done in two steps, since the window function accumulating the running sum has to be applied in a separate SELECT.
Variant 2
Another window function instead of the LEFT JOIN. May of may not be faster. Test with EXPLAIN ANALYZE.
SELECT *
,CASE WHEN running_sum >= 150 AND thedate = first_value(thedate)
OVER (PARTITION BY store_id, running_sum >= 150 ORDER BY thedate)
THEN thedate END AS activated_date
FROM (
SELECT *
,sum(sales_volume)
OVER (PARTITION BY store_id ORDER BY thedate) AS running_sum
FROM tbl
) b
ORDER BY store_id, thedate;
->sqlfiddle demonstrating both.