I am rather new to deep learning and got some questions on performing a multi-label image classification task with keras convolutional neural networks. Those are mainly referring to evaluating keras models performing multi label classification tasks. I will structure this a bit to get a better overview first.
Problem Description
The underlying dataset are album cover images from different genres. In my case those are electronic, rock, jazz, pop, hiphop. So we have 5 possible classes that are not mutual exclusive. Task is to predict possible genres for a given album cover. Each album cover is of size 300px x 300px. The images are loaded into tensorflow datasets, resized to 150px x 150px.
Model Architecture
The architecture for the model is the following.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
data_augmentation = keras.Sequential(
[
layers.experimental.preprocessing.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.experimental.preprocessing.RandomFlip("vertical"),
layers.experimental.preprocessing.RandomRotation(0.4),
layers.experimental.preprocessing.RandomZoom(height_factor=(0.2, 0.6), width_factor=(0.2, 0.6))
]
)
def create_model(num_classes=5, augmentation_layers=None):
model = Sequential()
# We can pass a list of layers performing data augmentation here
if augmentation_layers:
# The first layer of the augmentation layers must define the input shape
model.add(augmentation_layers)
model.add(layers.experimental.preprocessing.Rescaling(1./255))
else:
model.add(layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)))
model.add(layers.Conv2D(32, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
# Use sigmoid activation function. Basically we train binary classifiers for each class by specifiying binary crossentropy loss and sigmoid activation on the output layer.
model.add(layers.Dense(num_classes, activation='sigmoid'))
model.summary()
return model
I'm not using the usual metrics here like standard accuracy. In this paper I read that you cannot evaluate multi-label classification models with the usual methods. In chapter 7. evaluation metrics the hamming loss and an adjusted accuracy (variant of exact match) are presented which I use for this model.
The hamming loss is already provided by tensorflow-addons (see here) and an implementation of the subset accuracy I found here (see here).
from tensorflow_addons.metrics import HammingLoss
hamming_loss = HammingLoss(mode="multilabel", threshold=0.5)
def subset_accuracy(y_true, y_pred):
# From https://stackoverflow.com/questions/56739708/how-to-implement-exact-match-subset-accuracy-as-a-metric-for-keras
threshold = tf.constant(.5, tf.float32)
gtt_pred = tf.math.greater(y_pred, threshold)
gtt_true = tf.math.greater(y_true, threshold)
accuracy = tf.reduce_mean(tf.cast(tf.equal(gtt_pred, gtt_true), tf.float32), axis=-1)
return accuracy
# Create model
model = create_model(num_classes=5, augmentation_layers=data_augmentation)
# Compile model
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=[subset_accuracy, hamming_loss])
# Fit the model
history = model.fit(training_dataset, epochs=epochs, validation_data=validation_dataset, callbacks=callbacks)
Problem with this model
When training the model subset_accuracy hamming_loss are at some point stuck which looks like the following:
What could cause this behaviour. I am honestly a little bit lost right now. Could this be a case of the dying relu problem? Or is it wrong use of the metrics mentioned or is the implementation of those maybe wrong?
So far I tried to test differen optimizers and lowering the learning rate (e.g. from 0.01 to 0.001, 0.0001, etc..) but that didn't help either.
Maybe somebody has an idea that can help me.
Thanks in advance!
I think you need to tune your model's hyperparameters right. For that I'll recommend try using Keras Tuner library.
This would take some time to run, but will fetch you right set of hyperparameters.
Related
i'm a beginner in the argument. I have this problem: I have to classify the percentage of 2 class in each frame of a video.
I created a small dataset with about 500 images (250 of each class), and a CNN with these layers:
model = tf.models.Sequential()
model.add(tf.layers.Conv2D(32, kernel_size=(3, 3), activation='relu',input_shape=(224,224,3)))
model.add(tf.layers.MaxPooling2D((2, 2)))
model.add(tf.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(tf.layers.MaxPooling2D((2, 2)))
model.add(tf.layers.Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(tf.layers.MaxPooling2D((2, 2)))
model.add(tf.layers.Conv2D(256, kernel_size=(3, 3), activation='relu'))
model.add(tf.layers.MaxPooling2D((2, 2)))
model.add(tf.layers.Flatten())
model.add(tf.layers.Dense(512, activation='relu'))
model.add(tf.layers.Dropout(0.2))
model.add(tf.layers.Dense(2,activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy', optimizer=tf.optimizers.Adam(learning_rate=0.00001), metrics=['accuracy'])
1)It's better for the problem use binary_crossentropy + sigmoid or binary_crossentropy + softmax?
2)Then it's better to use transfer learning/fine tuning or build CNN from scratch like this?
3)I'm using ImageDataGenerator for DataAugmentation because the small dataset, it's right?
4)Which values I can use for batch_size, steps_per_epochs,learning_rate...I noticed that the model accuracy goes early to 1.0 with val_accuracy, and in the predictions doesn't return the correct percentage of each class, but return values like [9.999e-1 4.444e-5]
Since, yours is a binary classification, go with sigmoid. Softmax is for multi-class (>2).
It is always better to use transfer learning. Go with VGG16, ResNet, Inception and others.
Yes, in case of small datasets, data augmentation helps a lot.
You need to use one neuron in the last layer rather than 2. Since, in one neuron, if value is greater than 0.5, it will be considered as class 1 otherwise 0. If you want to stick with two neurons, then, for getting your answer, you should take np.argmax of the prediction, in the example you have given, pred = [9.999e-1 4.444e-5], the predicted class is 0, as pred[0] > pred[1].
I am currently working on the implementation of an LSTM to predict a binary outcome (either 0 or 1) for a given set of normed scaled features.
self._regressor.add(LSTM(units=60, activation='relu', return_sequences=True, input_shape=(data.x_train.shape[1], data.x_train.shape[2])))
self._regressor.add(Dropout(0.2))
self._regressor.add(LSTM(units=60, activation='relu', return_sequences=True))
self._regressor.add(Dropout(0.3))
self._regressor.add(LSTM(units=80, activation='relu', return_sequences=True))
self._regressor.add(Dropout(0.4))
self._regressor.add(LSTM(units=120, activation='relu'))
self._regressor.add(Dropout(0.5))
#this is the output layer
self._regressor.add(Dense(units=1, activation='sigmoid'))
self._logger.info("TensorFlow Summary\n {}".format(self._regressor.summary()))
#run regressor
self._regressor.compile(optimizer='adam', loss="binary_crossentropy", metrics=['accuracy'])
self._regressor.fit(data.x_train, data.y_train, epochs=1, batch_size=32)
data.y_pred_scaled = self._regressor.predict(data.x_test)
data.y_pred = self._scaler_target.inverse_transform(data.y_pred_scaled)
scores = self._regressor.evaluate(data.x_test, data.y_test, verbose=0)
My issue here is that the output of my prediction has a range of max: 0.5188445 and min: 0.518052, implying to me that all of my classifications are positive (which is definitely incorrect). I even tried predict_classes and this yielded an array of 1's.
I am struggling to find where my issue is despite numerous searches online. I have ensured that my final output layer consists of a sigmoid function as well as included the loss as the binary_crossentropy also. My data has been scaled using sklearn's MinMaxScaler with feature_range=(0,1). I am running my code through a debugger and everything up to the self._regressor.fit looks good so far. I am just struggling with quantifying the output of the predictions.
Any help would be greatly appreciated.
I am working a simple image classification. Each object must fit in one of the categories based on its material (aluminum, iron, copper)
There is only one picture for each class, e.g. all aluminum materials don't appear in the same photo along with iron materials for example. The model is working pretty well and the accuracy is great. However I don't know how to handle images that don't fit any of these 3 categories. Let's say I submit a picture of a piece of wood. This obliviously don't fit in any of the 3 categories, but my model seems to "guess" one of them and give one of these random categories a false positive along with a high probability. I understand the result of model.predict() cannot be zero, the ideal scenario. I have tested both softmax and sigmoid activations to no avail. I also tried to create a bogus category called "none" and trained the model with random photos of objects that do not have any of the aforementioned materials. The result was the whole model to become unreliable and lost most of the accuracy I had before.
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(64, 64, 3)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(classes, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
checkpoint = ModelCheckpoint(filepath='c:/Users/data/models/model-{epoch:02d}-{val_loss:.2f}.hdf5',save_best_only=True)
callbacks_list = [checkpoint]
model.fit(x_train, y_train,
batch_size=75,
epochs=20,
verbose=1,
validation_data=(x_valid, y_valid), callbacks=[checkpoint])
From my understanding, this is almost impossible with supervised learning.
Supervised learning takes some dataset and let the machine learn. However the category that falls under "none" is simply too much. It is almost impossible to cover all other materials under the category of none. Worst is that supervised learning will mostly recognize what had been trained. so when a completely new stuff appears in your testing. it is very likely, the system will ignore or give one of the result based on the given training.
One approach that is more suitable in your application is unsupervised learning. There should be many resources and researches in using unsupervised learning for image classification. One of the sample paper:
https://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Siva_Looking_Beyond_the_2013_CVPR_paper.pdf
Any feedback is welcomed. I stand corrected. Thank you
You need to add yet another class which you will label items not matching your existing labels. So you have aluminum, iron, copper and none_of_the_above
Change your model in line:
model.add(Dense(classes, activation='sigmoid'))
to
model.add(Dense(classes+1, activation='sigmoid'))
And modify your data to label wood as none_of_the_above. You will need a lot of examples that do not match aluminum, iron, copper.
Now add custom accuracy:
def ignore_accuracy_of_class(class_to_ignore=0):
def ignore_acc(y_true, y_pred):
y_true_class = K.argmax(y_true, axis=-1)
y_pred_class = K.argmax(y_pred, axis=-1)
ignore_mask = K.cast(K.not_equal(y_pred_class, class_to_ignore), 'int32')
matches = K.cast(K.equal(y_true_class, y_pred_class), 'int32') * ignore_mask
accuracy = K.sum(matches) / K.maximum(K.sum(ignore_mask), 1)
return accuracy
return ignore_acc
and add it to compile:
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy', ignore_accuracy_of_class(4)])
4 in ignore_accuracy_of_class is a label to ignore. Now you have both accuracy of the whole model and accuracy for only your selected aluminum, iron, copper labels.
I am running a CNN for left and right shoeprint classfication. I have 190,000 training images and I use 10% of it for validation. My model is setup as shown below. I get the paths of all the images, read them in and resize them. I normalize the image, and then fit it to the model. My issue is that I have stuck at a training accuracy of 62.5% and a loss of around 0.6615-0.6619. Is there something wrong that I am doing? How can I stop this from happening?
Just some interesting points to note:
I first tested this on 10 images I was having the same issue but changing the optimizer to adam and batch size to 4 worked.
I then tested on more and more images, but each time I would need to change the batch size to get improvements in the accuracy and loss. With 10,000 images I had to use a batch size of 500 and optimizer rmsprop. However, the accuracy and loss only really began to change after epoch 10.
I am now training on 190,000 images and I cannot increase the batch size as my GPU is at is max.
imageWidth = 50
imageHeight = 150
def get_filepaths(directory):
file_paths = []
for filename in files:
filepath = os.path.join(root, filename)
file_paths.append(filepath) # Add it to the list.
return file_paths
def cleanUpPaths(fullFilePaths):
cleanPaths = []
for f in fullFilePaths:
if f.endswith(".png"):
cleanPaths.append(f)
return cleanPaths
def getTrainData(paths):
trainData = []
for i in xrange(1,190000,2):
im = image.imread(paths[i])
im = image.imresize(im, (150,50))
im = (im-255)/float(255)
trainData.append(im)
trainData = np.asarray(trainData)
right = np.zeros(47500)
left = np.ones(47500)
trainLabels = np.concatenate((left, right))
trainLabels = np_utils.to_categorical(trainLabels)
return (trainData, trainLabels)
#create the convnet
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(imageWidth,imageHeight,1),strides=1))#32
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu',strides=1))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(1, 3)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (1, 2), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
sgd = SGD(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer='rmsprop',metrics=['accuracy'])
#prepare the training data*/
trainPaths = get_filepaths("better1/train")
trainPaths = cleanUpPaths(trainPaths)
(trainData, trainLabels) = getTrainData(trainPaths)
trainData = np.reshape(trainData,(95000,imageWidth,imageHeight,1)).astype('float32')
trainData = (trainData-255)/float(255)
#train the convnet***
model.fit(trainData, trainLabels, batch_size=500, epochs=50, validation_split=0.2)
#/save the model and weights*/
model.save('myConvnet_model5.h5');
model.save_weights('myConvnet_weights5.h5');
I've had this issue a number of times now, so thought to make a little recap of it and possible solutions etc. to help people in the future.
Issue: Model predicts one of the 2 (or more) possible classes for all data it sees*
Confirming issue is occurring: Method 1: accuracy for model stays around 0.5 while training (or 1/n where n is number of classes). Method 2: Get the counts of each class in predictions and confirm it's predicting all one class.
Fixes/Checks (in somewhat of an order):
Double Check Model Architecture: use model.summary(), inspect the model.
Check Data Labels: make sure the labelling of your train data hasn't got mixed up somewhere in the preprocessing etc. (it happens!)
Check Train Data Feeding Is Randomised: make sure you are not feeding your train data to the model one class at a time. For instance if using ImageDataGenerator().flow_from_directory(PATH), check that param shuffle=True and that batch_size is greater than 1.
Check Pre-Trained Layers Are Not Trainable:** If using a pre-trained model, ensure that any layers that use pre-trained weights are NOT initially trainable. For the first epochs, only the newly added (randomly initialised) layers should be trainable; for layer in pretrained_model.layers: layer.trainable = False should be somewhere in your code.
Ramp Down Learning Rate: Keep reducing your learning rate by factors of 10 and retrying. Note you will have to fully reinitialize the layers you are trying to train each time you try a new learning rate. (For instance, I had this issue that was only solved once I got down to lr=1e-6, so keep going!)
If any of you know of more fixes/checks that could possible get the model training properly then please do contribute and I'll try to update the list.
**Note that is common to make more of the pretrained model trainable, once the new layers have been initially trained "enough"
*Other names for the issue to help searches get here...
keras tensorflow theano CNN convolutional neural network bad training stuck fixed not static broken bug bugged jammed training optimization optimisation only 0.5 accuracy does not change only predicts one single class wont train model stuck on class model resetting itself between epochs keras CNN same output
You can try to add a BatchNornmalization() layer after MaxPooling2D(). It works for me.
I just have 2 things more to add to the great list of DBCerigo.
Check activation functions: some layers have linear activation function by default, if you do not insert some non linearity into your model it wont be able to generalize, so the net will try to learn how to separate linearly a feature space that is not linear. Making sure you have your non linearity set is a good checkpoint.
Check Model Complexity: if you have a relatively simple model and it learns only till the 1st or the 2nd epoch and then it stalls, it may be that it is trying to learn something too complex. Try making the model deeper. This usually happens when working with frozen models with only 1 or 2 layers unfrozen.
Although the 2nd one may be obvious, I run into his problem once and I lost lots of time checking everythin (data, batches, LR...) before figuring out.
Hope this helps
I would try a couple of things. A lower learning rate should help with more data. Generally, adapting the optimizer should help. Additionally your network seems really small, you might want to increase the capacity of the model by adding layers or increasing the number of filters in the layers.
A better description on how to apply deep learning in practice is given here.
in my case it is the activification function matters. I change from 'sgd' to 'a'
I am using keras and RNN to classify slack text data on whether the text is reaction worthy or not (1 - emoji, 0 - no emoji). I have removed usernames and urls from the text as well as dropped duplicates with different target variables.
I am not able to get the model to generalize to unseen data. The loss of the train/val sets look good and continually decrease but the accuracy of the val set only decreases.
I am using a pretrained GLOVE word embedding since my training size is only about 25,000 sentences.
I have added additional layers, changed my regularization value and increased dropout but get similar results. Is my model not complex enough to generalize the data? The times i added additional layers they were much smaller but deeper because the training time was about 2 min per epoch.
Any insight would be appreciated.
embedding_layer = Embedding(len(word_index) + 1,
100,
weights=[embeddings_matrix],
input_length=max_message_length,
embeddings_regularizer=l2(0.001),
trainable=True)
# Creating the Model
model = Sequential()
model.add(embedding_layer)
model.add(Convolution1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.7))
model.add(layers.GRU(128))
model.add(Dropout(0.7))
model.add(Dense(1, activation='sigmoid'))
# Compiling the model with our given Optimizer
optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.000025)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
print(model.summary())