Get index in matrix using coordinates from linspace - numpy

I have a matrix m defined by two linspaces x and y:
x = np.linspace(-1, 1, 100).reshape(1, 100)
y = np.linspace(-1, 1, 100).reshape(100, 1)
m = x + 1j * y
# > m.shape
# (100, 100)
What if I want to set a value to a point at coordinates defined in the given linspace, not the array index?
For example, I would want to write something like this:
m[-0.5, 0.123] = val
Is there an elegant way in numpy to convert from a coordinate system to the closest index in the array?

Here are two possible takes. You could use np.searchsorted to find an index based on value provided x and y are increasing. If x and y are evenly spaced (as in your example of linspace), then you can approximate the index of value val by (val - (-1) / (1 - (-1)) * 100 in O(1) time.
import numpy as np
z = np.linspace(-1, 1, 100)
m = z[None,:] + 1j * z[:,None]
# using searchsorted
f = lambda v: np.searchsorted(z, v)
# approximate the index using the fact that numbers in z are evenly spaced
g = lambda v: int((v - z[0]) / (z[-1] - z[0]) * z.shape[0])
print(m[f(0.5), f(0.123)])
# (0.1313131313131315+0.5151515151515154j)
print(m[g(0.5), g(0.123)])
# (0.1313131313131315+0.5151515151515154j)

Related

batched tensor slice, slice B x N x M with B x 1

I have an B x M x N tensor, X, and I have and B x 1 tensor, Y, which corresponds to the index of tensor X at dimension=1 that I want to keep. What is the shorthand for this slice so that I can avoid a loop?
Essentially I want to do this:
Z = torch.zeros(B,N)
for i in range(B):
Z[i] = X[i][Y[i]]
the following code is similar to the code in the loop. the difference is that instead of sequentially indexing the array Z,X and Y we are indexing them in parallel using the array i
B, M, N = 13, 7, 19
X = np.random.randint(100, size= [B,M,N])
Y = np.random.randint(M , size= [B,1])
Z = np.random.randint(100, size= [B,N])
i = np.arange(B)
Y = Y.ravel() # reducing array to rank-1, for easy indexing
Z[i] = X[i,Y[i],:]
this code can be further simplified as
-> Z[i] = X[i,Y[i],:]
-> Z[i] = X[i,Y[i]]
-> Z[i] = X[i,Y]
-> Z = X[i,Y]
pytorch equivalent code
B, M, N = 5, 7, 3
X = torch.randint(100, size= [B,M,N])
Y = torch.randint(M , size= [B,1])
Z = torch.randint(100, size= [B,N])
i = torch.arange(B)
Y = Y.ravel()
Z = X[i,Y]
The answer provided by #Hammad is short and perfect for the job. Here's an alternative solution if you're interested in using some less known Pytorch built-ins. We will use torch.gather (similarly you can achieve this with numpy.take).
The idea behind torch.gather is to construct a new tensor-based on two identically shaped tensors containing the indices (here ~ Y) and the values (here ~ X).
The operation performed is Z[i][j][k] = X[i][Y[i][j][k]][k].
Since X's shape is (B, M, N) and Y shape is (B, 1) we are looking to fill in the blanks inside Y such that Y's shape becomes (B, 1, N).
This can be achieved with some axis manipulation:
>>> Y.expand(-1, N)[:, None] # expand to dim=1 to N and unsqueeze dim=1
The actual call to torch.gather will be:
>>> X.gather(dim=1, index=Y.expand(-1, N)[:, None])
Which you can reshape to (B, N) by adding in [:, 0].
This function can be very effective in tricky scenarios...

Scipy Spatial Distance Sub-module rejects Numpy Array

I have a dataframe named, "df", with 4 columns. Three columns are independent variables: x1, x2, and x3. And, the other variable, y, is the dependent variable
I would like to calculate the distance, "pdist" between the dependent variable and each of the dependent variables, so I first converted each column to a numpy array as follows:
y = df[["y"]].values
x1 = df[["x1"]].values
x2 = df[["x2"]].values
x3 = df[["x3"]].values
When I feed these arrays through this coding pipeline I got from Github:
import numpy as np
from scipy.spatial.distance import pdist
def distance_correlation(Xval, Yval, pval=True, nruns=500):
X, Y = np.atleast_1d(Xval),np.atleast_1d(Yval)
if np.prod(X.shape) == len(X):X = X[:, None]
if np.prod(Y.shape) == len(Y):Y = Y[:, None]
X, Y = np.atleast_2d(X),np.atleast_2d(Y)
n = X.shape[0]
if Y.shape[0] != X.shape[0]:raise ValueError('Number of samples must match')
a, b = squareform(pdist(X)),squareform(pdist(Y))
A = a - a.mean(axis=0)[None, :] - a.mean(axis=1)[:, None] + a.mean()
B = b - b.mean(axis=0)[None, :] - b.mean(axis=1)[:, None] + b.mean()
dcov2_xy = (A * B).sum() / float(n * n)
dcov2_xx = (A * A).sum() / float(n * n)
dcov2_yy = (B * B).sum() / float(n * n)
dcor = np.sqrt(dcov2_xy) / np.sqrt(np.sqrt(dcov2_xx) * np.sqrt(dcov2_yy))
if pval:
greater = 0
for i in range(nruns):
Y_r = copy.copy(Yval)
np.random.shuffle(Y_r)
if distcorr(Xval, Y_r, pval=False) > dcor:
greater += 1
return (dcor, greater / float(nruns))
else:
return dcor
distance_correlation(x1, y, pval=True, nruns=500)
I get this error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-32-c720c9df4e97> in <module>
----> 1 distance_correlation(bop_sp500, price, pval=True, nruns=500)
<ipython-input-17-e0b3aea12c32> in distance_correlation(Xval, Yval, pval, nruns)
9 n = X.shape[0]
10 if Y.shape[0] != X.shape[0]:raise ValueError('Number of samples must match')
---> 11 a, b = squareform(pdist(X)),squareform(pdist(Y))
12 A = a - a.mean(axis=0)[None, :] - a.mean(axis=1)[:, None] + a.mean()
13 B = b - b.mean(axis=0)[None, :] - b.mean(axis=1)[:, None] + b.mean()
~\Anaconda3\lib\site-packages\scipy\spatial\distance.py in pdist(X, metric, *args, **kwargs)
1997 s = X.shape
1998 if len(s) != 2:
-> 1999 raise ValueError('A 2-dimensional array must be passed.')
2000
2001 m, n = s
ValueError: A 2-dimensional array must be passed..
Could anyone identify where I am going wrong? I know the error originates from the manner in which I created my numpy arrays. But, I have no clues on fixing it.
Please explain it with examples that use my variable definitions. I am new to Python
Ok, so I finally managed to figure out the cause of the problem I faced:
The Numpy array that was being fed into the helper function was a 2d array.
While the helper function required a "Numpy vector"; i.e. a 1d Numpy array.
The best way to create it is to use the numpy.ravel() function. Hence, for my datasets, the code would be as follows (I have broken down the steps for simplicity):
# Create Arrays
y = df[["y"]].values
x1 = df[["x1"]].values
x2 = df[["x2"]].values
x3 = df[["x3"]].values
# Ravel Them
y = y.ravel()
x1 = x1.ravel()
x2 = x2.ravel()
x3 = x3.ravel()

Rotating a 2d sub-array using numpy without aliasing effects

I would like to rotate only the positive value pixels in my 2d array some degree about the center point. The data represents aerosol concentrations from a plume dispersion model, and the chimney position is the origin of rotation.
I would like to rotate this dispersion pattern given the wind direction.
The concentrations are first calculated for a wind direction along the x-axis and then translated to their rotated position using a 2d linear rotation about the center point of my array (the chimney position) for all points whose concentration is > 0.
The input X,Y to the rotation formula are pixel indexes.
My problem is that the output is aliased since integers become floats. In order to obtain integers, I rounded up or down the output. However, this creates null cells which become increasingly numerous as the angle increases.
Can anyone help me find a solution to my problem? I would like to fix this problem if possible using numpy, or a minimum of packages...
The part of my script that deals with computing the concentrations and rotating the pixel by 50°N is the following. Thank you for your help.
def linear2D_rotation(xcoord,ycoord,azimuth_degrees):
radians = (90 - azimuth_degrees) * (np.pi / 180) # in radians
xcoord_rotated = (xcoord * np.cos(radians)) - (ycoord * np.sin(radians))
ycoord_rotated = (xcoord * np.sin(radians)) + (ycoord * np.cos(radians))
return xcoord_rotated,ycoord_rotated
u_orient = 50 # wind orientation in degres from North
kernel = np.zeros((NpixelY, NpixelX)) # initialize matrix
Yc = int((NpixelY - 1) / 2) # position of central pixel
Xc = int((NpixelX - 1) / 2) # position of central pixel
nk = 0
for Y in list(range(0,NpixelX)):
for X in list(range(0,NpixelY)):
# compute concentrations only in positive x-direction
if (X-Xc)>0:
# nnumber of pixels to origin point (chimney)
dx = ((X-Xc)+1)
dy = ((Y-Yc)+1)
# distance of point to origin (chimney)
DX = dx*pixel_size_X
DY = dy*pixel_size_Y
# compute diffusivity coefficients
Sy, Sz = calcul_diffusivity_coeff(DX, stability_class)
# concentration at ground level below the centerline of the plume
C = (Q / (2 * np.pi * u * Sy * Sz)) * \
np.exp(-(DY / (2 * Sy)) ** 2) * \
(np.exp(-((Z - H) / (2 * Sz)) ** 2) + np.exp(-((Z + H) / (2 * Sz)) ** 2)) # at point away from center line
C = C * 1e9 # convert MBq to Bq
# rotate only if concentration value at pixel is positive
if C > 1e-12:
X_rot, Y_rot = linear2D_rotation(xcoord=dx, ycoord=dy,azimuth_degrees=u_orient)
X2 = int(round(Xc+X_rot))
Y2 = int(round(Yc-Y_rot)) # Y increases downwards
# pixels that fall out of bounds -> ignore
if (X2 > (NpixelX - 1)) or (X2 < 0) or (Y2 > (NpixelY - 1)):
continue
else:
# replace new pixel position in kernel array
kernel[Y2, X2] = C
The original array to be rotated
The rotated array by 40°N showing the data loss
Your problem description is not 100% clear, but here are a few recommendations:
1.) Don't reinvent the wheel. There are standard solutions for things like rotating pixels. Use them! In this case
scipy.ndimage.affine_transform for performing the rotation
a homogeneous coordinate matrix for specifying the rotation
nearest neighbor interpolation (parameter order=0 in code below).
2.) Don't loop where not necessary. The speed you gain by not processing non-positive pixels is nothing against the speed you lose by looping. Compiled functions can ferry around a lot of redundant zeros before hand-written python code catches up with them.
3.) Don't expect a solution that maps pixels one-to-one because it is a fact that there will be points that are no ones nearest neighbor and points that are nearest neighbor to multiple other points. With that in mind, you may want to consider a higher order, smoother interpolation.
Comparing your solution to the standard tools solution we find that the latter
gives a comparable result much faster and without those hole artifacts.
Code (without plotting). Please note that I had to transpose and flipud to align the results :
import numpy as np
from scipy import ndimage as sim
from scipy import stats
def mock_data(n, Theta=50, put_neg=True):
y, x = np.ogrid[-20:20:1j*n, -9:3:1j*n, ]
raster = stats.norm.pdf(y)*stats.norm.pdf(x)
if put_neg:
y, x = np.ogrid[-5:5:1j*n, -3:9:1j*n, ]
raster -= stats.norm.pdf(y)*stats.norm.pdf(x)
raster -= (stats.norm.pdf(y)*stats.norm.pdf(x)).T
return {'C': raster * 1e-9, 'Theta': Theta}
def rotmat(Theta, offset=None):
theta = np.radians(Theta)
c, s = np.cos(theta), np.sin(theta)
if offset is None:
return np.array([[c, -s] [s, c]])
R = np.array([[c, -s, 0], [s, c,0], [0,0,1]])
to, fro = np.identity(3), np.identity(3)
offset = np.asanyarray(offset)
to[:2, 2] = offset
fro[:2, 2] = -offset
return to # R # fro
def f_pp(C, Theta):
m, n = C.shape
clipped = np.maximum(0, 1e9 * data['C'])
clipped[:, :n//2] = 0
M = rotmat(Theta, ((m-1)/2, (n-1)/2))
return sim.affine_transform(clipped, M, order = 0)
def linear2D_rotation(xcoord,ycoord,azimuth_degrees):
radians = (90 - azimuth_degrees) * (np.pi / 180) # in radians
xcoord_rotated = (xcoord * np.cos(radians)) - (ycoord * np.sin(radians))
ycoord_rotated = (xcoord * np.sin(radians)) + (ycoord * np.cos(radians))
return xcoord_rotated,ycoord_rotated
def f_OP(C, Theta):
kernel = np.zeros_like(C)
m, n = C.shape
for Y in range(m):
for X in range(n):
if X > n//2:
c = C[Y, X] * 1e9
if c > 1e-12:
dx = X - n//2 + 1
dy = Y - m//2 + 1
X_rot, Y_rot = linear2D_rotation(xcoord=dx, ycoord=dy,azimuth_degrees=Theta)
X2 = int(round(n//2+X_rot))
Y2 = int(round(m//2-Y_rot)) # Y increases downwards
# pixels that fall out of bounds -> ignore
if (X2 > (n - 1)) or (X2 < 0) or (Y2 > (m - 1)):
continue
else:
# replace new pixel position in kernel array
kernel[Y2, X2] = c
return kernel
n = 100
data = mock_data(n, 70)

solving a sparse non linear system of equations using scipy.optimize.root

I want to solve the following non-linear system of equations.
Notes
the dot between a_k and x represents dot product.
the 0 in the first equation represents 0 vector and 0 in the second equation is scaler 0
all the matrices are sparse if that matters.
Known
K is an n x n (positive definite) matrix
each A_k is a known (symmetric) matrix
each a_k is a known n x 1 vector
N is known (let's say N = 50). But I need a method where I can easily change N.
Unknown (trying to solve for)
x is an n x 1 a vector.
each alpha_k for 1 <= k <= N a scaler
My thinking.
I am thinking of using scipy root to find x and each alpha_k. We essentially have n equations from each row of the first equation and another N equations from the constraint equations to solve for our n + N variables. Therefore we have the required number of equations to have a solution.
I also have a reliable initial guess for x and the alpha_k's.
Toy example.
n = 4
N = 2
K = np.matrix([[0.5, 0, 0, 0], [0, 1, 0, 0],[0,0,1,0], [0,0,0,0.5]])
A_1 = np.matrix([[0.98,0,0.46,0.80],[0,0,0.56,0],[0.93,0.82,0,0.27],[0,0,0,0.23]])
A_2 = np.matrix([[0.23, 0,0,0],[0.03,0.01,0,0],[0,0.32,0,0],[0.62,0,0,0.45]])
a_1 = np.matrix(scipy.rand(4,1))
a_2 = np.matrix(scipy.rand(4,1))
We are trying to solve for
x = [x1, x2, x3, x4] and alpha_1, alpha_2
Questions:
I can actually brute force this toy problem and feed it to the solver. But how do I do I solve this toy problem in such a way that I can extend it easily to the case when I have let's say n=50 and N=50
I will probably have to explicitly compute the Jacobian for larger matrices??.
Can anyone give me any pointers?
I think the scipy.optimize.root approach holds water, but steering clear of the trivial solution might be the real challenge for this system of equations.
In any event, this function uses root to solve the system of equations.
def solver(x0, alpha0, K, A, a):
'''
x0 - nx1 numpy array. Initial guess on x.
alpha0 - nx1 numpy array. Initial guess on alpha.
K - nxn numpy.array.
A - Length N List of nxn numpy.arrays.
a - Length N list of nx1 numpy.arrays.
'''
# Establish the function that produces the rhs of the system of equations.
n = K.shape[0]
N = len(A)
def lhs(x_alpha):
'''
x_alpha is a concatenation of x and alpha.
'''
x = np.ravel(x_alpha[:n])
alpha = np.ravel(x_alpha[n:])
lhs_top = np.ravel(K.dot(x))
for k in xrange(N):
lhs_top += alpha[k]*(np.ravel(np.dot(A[k], x)) + np.ravel(a[k]))
lhs_bottom = [0.5*x.dot(np.ravel(A[k].dot(x))) + np.ravel(a[k]).dot(x)
for k in xrange(N)]
lhs = np.array(lhs_top.tolist() + lhs_bottom)
return lhs
# Solve the system of equations.
x0.shape = (n, 1)
alpha0.shape = (N, 1)
x_alpha_0 = np.vstack((x0, alpha0))
sol = root(lhs, x_alpha_0)
x_alpha_root = sol['x']
# Compute norm of residual.
res = sol['fun']
res_norm = np.linalg.norm(res)
# Break out the x and alpha components.
x_root = x_alpha_root[:n]
alpha_root = x_alpha_root[n:]
return x_root, alpha_root, res_norm
Running on the toy example, however, only produces the trivial solution.
# Toy example.
n = 4
N = 2
K = np.matrix([[0.5, 0, 0, 0], [0, 1, 0, 0],[0,0,1,0], [0,0,0,0.5]])
A_1 = np.matrix([[0.98,0,0.46,0.80],[0,0,0.56,0],[0.93,0.82,0,0.27],
[0,0,0,0.23]])
A_2 = np.matrix([[0.23, 0,0,0],[0.03,0.01,0,0],[0,0.32,0,0],
[0.62,0,0,0.45]])
a_1 = np.matrix(scipy.rand(4,1))
a_2 = np.matrix(scipy.rand(4,1))
A = [A_1, A_2]
a = [a_1, a_2]
x0 = scipy.rand(n, 1)
alpha0 = scipy.rand(N, 1)
print 'x0 =', x0
print 'alpha0 =', alpha0
x_root, alpha_root, res_norm = solver(x0, alpha0, K, A, a)
print 'x_root =', x_root
print 'alpha_root =', alpha_root
print 'res_norm =', res_norm
Output is
x0 = [[ 0.00764503]
[ 0.08058471]
[ 0.88300129]
[ 0.85299622]]
alpha0 = [[ 0.67872815]
[ 0.69693346]]
x_root = [ 9.88131292e-324 -4.94065646e-324 0.00000000e+000
0.00000000e+000]
alpha_root = [ -4.94065646e-324 0.00000000e+000]
res_norm = 0.0

Is there any way to use bivariate colormaps in matplotlib?

In other words, I want to make a heatmap (or surface plot) where the color varies as a function of 2 variables. (Specifically, luminance = magnitude and hue = phase.) Is there any native way to do this?
Some examples of similar plots:
Several good examples of exactly(?) what I want to do.
More examples from astronomy, but with non-perceptual hue
Edit: This is what I did with it: https://github.com/endolith/complex_colormap
imshow can take an array of [r, g, b] entries. So you can convert the absolute values to intensities and phases - to hues.
I will use as an example complex numbers, because for it it makes the most sense. If needed, you can always add numpy arrays Z = X + 1j * Y.
So for your data Z you can use e.g.
imshow(complex_array_to_rgb(Z))
where (EDIT: made it quicker and nicer thanks to this suggestion)
def complex_array_to_rgb(X, theme='dark', rmax=None):
'''Takes an array of complex number and converts it to an array of [r, g, b],
where phase gives hue and saturaton/value are given by the absolute value.
Especially for use with imshow for complex plots.'''
absmax = rmax or np.abs(X).max()
Y = np.zeros(X.shape + (3,), dtype='float')
Y[..., 0] = np.angle(X) / (2 * pi) % 1
if theme == 'light':
Y[..., 1] = np.clip(np.abs(X) / absmax, 0, 1)
Y[..., 2] = 1
elif theme == 'dark':
Y[..., 1] = 1
Y[..., 2] = np.clip(np.abs(X) / absmax, 0, 1)
Y = matplotlib.colors.hsv_to_rgb(Y)
return Y
So, for example:
Z = np.array([[3*(x + 1j*y)**3 + 1/(x + 1j*y)**2
for x in arange(-1,1,0.05)] for y in arange(-1,1,0.05)])
imshow(complex_array_to_rgb(Z, rmax=5), extent=(-1,1,-1,1))
imshow(complex_array_to_rgb(Z, rmax=5, theme='light'), extent=(-1,1,-1,1))
imshow will take an NxMx3 (rbg) or NxMx4 (grba) array so you can do your color mapping 'by hand'.
You might be able to get a bit of traction by sub-classing Normalize to map your vector to a scaler and laying out a custom color map very cleverly (but I think this will end up having to bin one of your dimensions).
I have done something like this (pdf link, see figure on page 24), but the code is in MATLAB (and buried someplace in my archives).
I agree a bi-variate color map would be useful (primarily for representing very dense vector fields where your kinda up the creek no matter what you do).
I think the obvious extension is to let color maps take complex arguments. It would require specialized sub-classes of Normalize and Colormap and I am going back and forth on if I think it would be a lot of work to implement. I suspect if you get it working by hand it will just be a matter of api wrangling.
I created an easy to use 2D colormap class, that takes 2 NumPy arrays and maps them to an RGB image, based on a reference image.
I used #GjjvdBurg's answer as a starting point. With a bit of work, this could still be improved, and possibly turned into a proper Python module - if you want, feel free to do so, I grant you all credits.
TL;DR:
# read reference image
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
# map the data x and y to the RGB space, defined by the image
rgb = cmap_2d(data_x, data_y)
# generate a colorbar image
cbar_rgb = cmap_2d.generate_cbar()
The ColorMap2D class:
class ColorMap2D:
def __init__(self, filename: str, transpose=False, reverse_x=False, reverse_y=False, xclip=None, yclip=None):
"""
Maps two 2D array to an RGB color space based on a given reference image.
Args:
filename (str): reference image to read the x-y colors from
rotate (bool): if True, transpose the reference image (swap x and y axes)
reverse_x (bool): if True, reverse the x scale on the reference
reverse_y (bool): if True, reverse the y scale on the reference
xclip (tuple): clip the image to this portion on the x scale; (0,1) is the whole image
yclip (tuple): clip the image to this portion on the y scale; (0,1) is the whole image
"""
self._colormap_file = filename or COLORMAP_FILE
self._img = plt.imread(self._colormap_file)
if transpose:
self._img = self._img.transpose()
if reverse_x:
self._img = self._img[::-1,:,:]
if reverse_y:
self._img = self._img[:,::-1,:]
if xclip is not None:
imin, imax = map(lambda x: int(self._img.shape[0] * x), xclip)
self._img = self._img[imin:imax,:,:]
if yclip is not None:
imin, imax = map(lambda x: int(self._img.shape[1] * x), yclip)
self._img = self._img[:,imin:imax,:]
if issubclass(self._img.dtype.type, np.integer):
self._img = self._img / 255.0
self._width = len(self._img)
self._height = len(self._img[0])
self._range_x = (0, 1)
self._range_y = (0, 1)
#staticmethod
def _scale_to_range(u: np.ndarray, u_min: float, u_max: float) -> np.ndarray:
return (u - u_min) / (u_max - u_min)
def _map_to_x(self, val: np.ndarray) -> np.ndarray:
xmin, xmax = self._range_x
val = self._scale_to_range(val, xmin, xmax)
rescaled = (val * (self._width - 1))
return rescaled.astype(int)
def _map_to_y(self, val: np.ndarray) -> np.ndarray:
ymin, ymax = self._range_y
val = self._scale_to_range(val, ymin, ymax)
rescaled = (val * (self._height - 1))
return rescaled.astype(int)
def __call__(self, val_x, val_y):
"""
Take val_x and val_y, and associate the RGB values
from the reference picture to each item. val_x and val_y
must have the same shape.
"""
if val_x.shape != val_y.shape:
raise ValueError(f'x and y array must have the same shape, but have {val_x.shape} and {val_y.shape}.')
self._range_x = (np.amin(val_x), np.amax(val_x))
self._range_y = (np.amin(val_y), np.amax(val_y))
x_indices = self._map_to_x(val_x)
y_indices = self._map_to_y(val_y)
i_xy = np.stack((x_indices, y_indices), axis=-1)
rgb = np.zeros((*val_x.shape, 3))
for indices in np.ndindex(val_x.shape):
img_indices = tuple(i_xy[indices])
rgb[indices] = self._img[img_indices]
return rgb
def generate_cbar(self, nx=100, ny=100):
"generate an image that can be used as a 2D colorbar"
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
return self.__call__(*np.meshgrid(x, y))
Usage:
Full example, using the constant chroma reference taken from here as a screenshot:
# generate data
x = y = np.linspace(-2, 2, 300)
xx, yy = np.meshgrid(x, y)
ampl = np.exp(-(xx ** 2 + yy ** 2))
phase = (xx ** 2 - yy ** 2) * 6 * np.pi
data = ampl * np.exp(1j * phase)
data_x, data_y = np.abs(data), np.angle(data)
# Here is the 2D colormap part
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
rgb = cmap_2d(data_x, data_y)
cbar_rgb = cmap_2d.generate_cbar()
# plot the data
fig, plot_ax = plt.subplots(figsize=(8, 6))
plot_extent = (x.min(), x.max(), y.min(), y.max())
plot_ax.imshow(rgb, aspect='auto', extent=plot_extent, origin='lower')
plot_ax.set_xlabel('x')
plot_ax.set_ylabel('y')
plot_ax.set_title('data')
# create a 2D colorbar and make it fancy
plt.subplots_adjust(left=0.1, right=0.65)
bar_ax = fig.add_axes([0.68, 0.15, 0.15, 0.3])
cmap_extent = (data_x.min(), data_x.max(), data_y.min(), data_y.max())
bar_ax.imshow(cbar_rgb, extent=cmap_extent, aspect='auto', origin='lower',)
bar_ax.set_xlabel('amplitude')
bar_ax.set_ylabel('phase')
bar_ax.yaxis.tick_right()
bar_ax.yaxis.set_label_position('right')
for item in ([bar_ax.title, bar_ax.xaxis.label, bar_ax.yaxis.label] +
bar_ax.get_xticklabels() + bar_ax.get_yticklabels()):
item.set_fontsize(7)
plt.show()
I know this is an old post, but want to help out others that may arrive late. Below is a python function to implement complex_to_rgb from sage. Note: This implementation isn't optimal, but it is readable. See links: (examples)(source code)
Code:
import numpy as np
def complex_to_rgb(z_values):
width = z_values.shape[0]
height = z_values.shape[1]
rgb = np.zeros(shape=(width, height, 3))
for i in range(width):
row = z_values[i]
for j in range(height):
# define value, real(value), imag(value)
zz = row[j]
x = np.real(zz)
y = np.imag(zz)
# define magnitued and argument
magnitude = np.hypot(x, y)
arg = np.arctan2(y, x)
# define lighness
lightness = np.arctan(np.log(np.sqrt(magnitude) + 1)) * (4 / np.pi) - 1
if lightness < 0:
bot = 0
top = 1 + lightness
else:
bot = lightness
top = 1
# define hue
hue = 3 * arg / np.pi
if hue < 0:
hue += 6
# set ihue and use it to define rgb values based on cases
ihue = int(hue)
# case 1
if ihue == 0:
r = top
g = bot + hue * (top - bot)
b = bot
# case 2
elif ihue == 1:
r = bot + (2 - hue) * (top - bot)
g = top
b = bot
# case 3
elif ihue == 2:
r = bot
g = top
b = bot + (hue - 2) * (top - bot)
# case 4
elif ihue == 3:
r = bot
g = bot + (4 - hue) * (top - bot)
b = top
# case 5
elif ihue == 4:
r = bot + (hue - 4) * (top - bot)
g = bot
b = top
# case 6
else:
r = top
g = bot
b = bot + (6 - hue) * (top - bot)
# set rgb array values
rgb[i, j, 0] = r
rgb[i, j, 1] = g
rgb[i, j, 2] = b
return rgb