I am using a Transformer network for machine translation, during training of model the GPU runs out of memory during large dataset, it works fine with small data.
This is the self attention part, The error comes during the computation of matrices.
import tensorflow as tf
class SelfAttention(tf.keras.layers.Layer):
def __init__(self, embed_size, head):
super(SelfAttention, self).__init__()
self.head = head
self.embed_size = embed_size
self.head_dim = embed_size // head
assert (self.head_dim * head == embed_size), 'size of head_dim is not matching'
self.query = tf.keras.layers.Dense(self.head_dim, activation='linear', use_bias=False)
self.value = tf.keras.layers.Dense(self.head_dim, activation='linear', use_bias=False)
self.key = tf.keras.layers.Dense(self.head_dim, activation='linear', use_bias=False)
self.fc_layer = tf.keras.layers.Dense(self.embed_size, activation='linear')
def call(self, value, key, query, mask):
# Number of training examples
N = query.shape[0]
query_len, value_len, key_len = query.shape[1], value.shape[1], key.shape[1]
# Reshape according to the number of examples and words
query = tf.reshape(query, (N, query_len, self.head, self.head_dim))
value = tf.reshape(value, (N, value_len, self.head, self.head_dim))
key = tf.reshape(key, (N, key_len, self.head, self.head_dim))
query = self.query(query)
value = self.value(value)
key = self.key(key)
# energy shape: (N, head, query_len, key_len) try to imagine the shape in mind
energy = tf.einsum("nqhd, nkhd->nhqk", query, key)
if mask is not None:
energy = energy * mask
energy = tf.where(tf.equal(energy, 0), -1e20, energy)
attention = tf.keras.activations.softmax(energy, axis=3)
# attention shape: (N, head, query_len, key_len)
# value shape:(N, value_len, head, head_dim)
# output: (N, query_len, head, head_dim)
output = tf.reshape(tf.einsum("nhql, nlhd->nqhd", attention, value), (N, query_len, self.head*self.head_dim))
output = tf.keras.activations.linear(output)
return output
The error is
2021-09-20 11:51:49.615495: I tensorflow/core/common_runtime/bfc_allocator.cc:1036] 1 Chunks of size 35477760 totalling 33.83MiB
2021-09-20 11:51:49.615502: I tensorflow/core/common_runtime/bfc_allocator.cc:1036] 1 Chunks of size 40866304 totalling 38.97MiB
2021-09-20 11:51:49.615509: I tensorflow/core/common_runtime/bfc_allocator.cc:1036] 1 Chunks of size 47409664 totalling 45.21MiB
2021-09-20 11:51:49.615516: I tensorflow/core/common_runtime/bfc_allocator.cc:1036] 1 Chunks of size 47547136 totalling 45.34MiB
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in raise_from_not_ok_status(e, name)
6860 message = e.message + (" name: " + name if name is not None else "")
6861 # pylint: disable=protected-access
-> 6862 six.raise_from(core._status_to_exception(e.code, message), None)
6863 # pylint: enable=protected-access
6864
/opt/conda/lib/python3.7/site-packages/six.py in raise_from(value, from_value)
ResourceExhaustedError: OOM when allocating tensor with shape[32,334,25335] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [Op:BiasAdd]
What should I do?
You can use a generator to load just a part of the dataset in the GPU memory and with that you will be able to train with your model.
Here is an example of a simple generator for image classification that you need to adjust to your use for NLP:
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, labels, batch_size=32, dim=(32,32,32), n_channels=1,
n_classes=10, shuffle=True):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.labels = labels
self.list_IDs = list_IDs
self.n_channels = n_channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(list_IDs_temp)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim, self.n_channels))
y = np.empty((self.batch_size), dtype=int)
# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample
X[i,] = np.load('data/' + ID + '.npy')
# Store class
y[i] = self.labels[ID]
return X, keras.utils.to_categorical(y, num_classes=self.n_classes)
And then pass it to .fit
params = {'dim': (32,32,32),
'batch_size': 64,
'n_classes': 6,
'n_channels': 1,
'shuffle': True}
# Datasets
partition = # IDs
labels = # Labels
# Generators
training_generator = DataGenerator(partition['train'], labels, **params)
validation_generator = DataGenerator(partition['validation'], labels, **params)
model.fit_generator(generator=training_generator,
validation_data=validation_generator)
Related
I have a made a custom data generator that outputs batches of image sequences of shape (batch size, sequence length, image height, image width, channels), along with two labels y1 and y2.
However, I cant seem to retrieve the final (incomplete) batch during training. Any ideas where I am going wrong?
class DataGenerator(tf.keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, labels, training_set=False, batch_size=32, dim=(224, 224), n_channels=3, shuffle=True):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.labels = labels
self.training_set = training_set
self.list_IDs = list_IDs
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
num_batchs_per_epoch = int(np.floor(len(self.list_IDs) / self.batch_size))
return num_batchs_per_epoch
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
start = index*self.batch_size
end = (index+1)*self.batch_size
indexes = self.indexes[start:end]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y1, y2 = self.__data_generation(list_IDs_temp)
return X, [y1, y2]
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, 3, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, 3, *self.dim, self.n_channels))
y1 = np.empty((self.batch_size), dtype=float)
y2 = np.empty((self.batch_size), dtype=int)
# Generate data
for i, ID in enumerate(list_IDs_temp):
sequence = [s for s in ID]
f0, f1, f2 = [self.load_resize_image(image) for image in sequence]
# preprocess steps
f0 = self.preprocess(f0, self.training_set)
f1 = self.preprocess(f1, self.training_set)
f2 = self.preprocess(f2, self.training_set)
triplet = np.concatenate((f0,f1,f2), axis=0)
X[i,:,:,:,:] = triplet
ID = tuple(ID)
y1[i] = self.labels[ID][0]
y2[i] = self.labels[ID][1]
return X, y1, y2
def preprocess(self, img, training_set):
if self.training_set:
# apply transformations
gen = ImageDataGenerator()
img[0,:,:,:] = gen.apply_transform(x=img[0,:,:,:], transform_parameters={'theta':random.uniform(-180, 180),
'brightness': random.uniform(0.8, 1.2),
'flip_horizontal': random.getrandbits(1),
'shear': random.uniform(0,5),
'zx': random.uniform(0.9,1.1),
'zy': random.uniform(0.9,1.1),
'flip_vertical': random.getrandbits(1)
})
return img
def load_resize_image(self, image):
img = cv2.imread(image)
img = cv2.resize(img, dsize=(224, 224), interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_array = np.array(img)
img_array = np.expand_dims(img_array, 0)
return img_array
And at training...
history = model.fit(
training_generator,
epochs=epochs,
validation_data=validation_generator,
callbacks=callbacks
)
The code will always omit the last batch of data, due to this line of code:
int(np.floor(len(self.list_IDs) / self.batch_size))
See the example below:
number_of_samples = 1002
batch_size = 4
num_batches_per_epoch = int(np.floor(number_of_samples / 4))
num_batches_per_epoch (=250, if number_of_samples == 1000,1001,1002,1003)
The way the dataset is written, it will always omit one batch, which is not a problem, since in essence it is incomplete.
As you are shuffling at the end of each epoch:
if self.shuffle == True:
np.random.shuffle(self.indexes)
the not seen few samples in an epoch will definitely be seen in later epochs.
I am currently using a tf.keras.utils.Sequence object to generate image batches for a CNN. I am using Tensorflow 2.2 and the Model.fit method for the model. When I fit the model, the following warning is thrown in each epoch when I set use_multiprocessing=True in tf.keras.model.fit(...):
WARNING:tensorflow:multiprocessing can interact badly with TensorFlow,
causing nondeterministic deadlocks. For high performance data pipelines tf.data is recommended
The model is optimizing just fine, as expected from the docs and the fact that I am using a Sequence-based generator. But if use_multiprocessing is going to be a deprecated functionality in lieu of tf.data objects, I would like to be using the most up-to-date input pipeline. I currently use the following tf.keras.utils.Sequence-based generator inspired by this article on good practices for partitioning large datasets:
https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, labels, data_dir, batch_size=32, dim=(128,128), n_channels=1,
n_classes=2, shuffle=True, **augmentation_kwargs):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.labels = labels
self.list_IDs = list_IDs
self.data_dir = data_dir
self.n_channels = n_channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
self.augmentor = keras.preprocessing.image.ImageDataGenerator(**augmentation_kwargs)
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(list_IDs_temp)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim))
y = np.empty((self.batch_size), dtype=int)
# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample
X[i,] = np.load(self.data_dir +'/{}_stars.npy'.format(ID))
# Store class
y[i] = self.labels[ID]
# Reshape and apply augmentation to sample
X,y = self.augmentor.flow(X.reshape(self.batch_size,*self.dim,1),y=y,
shuffle=False,batch_size=self.batch_size)[0]
return X, y
All data from all classes is in the data_dir directory and are stored as individual .npy files. The IDs come from a list of strings. The class labels are taken from a dictionary whose keys are the IDs -- as in the article.
I really like the intuition of the Sequence generator set-up. I can also easily generator random batches to check that it is behaving as I would expect. But how can I reproduce this set-up with tf.data? How do I reproduce the multiprocessing batch generation of a Sequence generator with the interleave and prefetch methods of tf.data.Dataset? And/or can I simply ingest this Sequence-based generator with the tf.data.Dataset.from_generator() method?
Many thanks in advance.
may be to late to answer, but that what I did and it's work fine for me;
1- my class was like that;
class DataGen(Sequence):
def __init__(self, df, sr=8000, seconds=3, batch_size=16, shuffle=True):
self.files = np.array(df.filepath)
self.label = np.array(df.label)
self.batch_size = batch_size
self.shuffle = shuffle
self.sr = sr
self.seconds = seconds
self.dim = self.sr*self.seconds
self.on_epoch_end()
def __len__():
return len(self.label)//self.batch_size
def __getitem__(self, x):
indexs = self.indexs[np.arange(x, x+self.batch_size)]
return self.__getBatch__(indexs)
def __getBatch__(self, indexs):
X, y = [], []
for i in indexs:
wav = self.__loadFile__(self.files[i])
X.append(librosa.feature.mfcc(wav, self.sr).T)
y.append(self.label[i])
return tf.convert_to_tensor(X), to_categorical(y, num_classes=2)
def __loadFile__(self, file):
y, sr = librosa.load(file, sr=8000, mono=True)
if len(y)>self.dim:
return y[:self.dim]
return np.pad(y, (0, self.dim-len(y)), 'constant', constant_values=0)
def on_epoch_end(self):
self.indexs = np.arange(len(self.label))
if self.shuffle:
np.random.shuffle(self.indexs)
2- than I change to a function like follow;
def gen(sr=8000, seconds=3, batch_size=16, shuffle=True):
dim = sr*seconds
def loadFile(file):
wav, _ = librosa.load(file, sr=sr, mono=True)
if len(wav)>dim:
return wav[:dim]
return np.pad(wav, (0, dim-len(wav)), 'constant', constant_values=0)
while True:
indexs = np.arange(len(df))
if shuffle:
np.random.shuffle(indexs)
for x in range(len(df)//batch_size):
X, y = [], []
for i in indexs[np.arange(x*batch_size, (x+1)*batch_size)]:
X.append(librosa.feature.mfcc(loadFile(df.filepath[i]), sr).T)
y.append(df.label[i])
yield tf.convert_to_tensor(X), to_categorical(y, num_classes=2)
3- and works fine:
dataset = tf.data.Dataset.from_generator(gen, (tf.dtypes.float32, tf.dtypes.int32))
here's another method that I use with tensorflow and it's workes fine:
class DataGen():
def __init__(self, df, batch_size=32, shuffle=True):
self.data = np.array(df)
self.indexs = np.arange(self.data.shape[0])
if shuffle:
np.random.shuffle(self.indexs)
self.batch_size = batch_size
def __len__(self):
return self.data.shape[0]//self.batch_size
def get_item(self, x):
# data preprocessing
data, label = self.data[x]
return data, label
def __call__(self):
for i in self.indexs:
yield self.get_item(i)
train_gen = DataGen(train_df)
types = (tf.float32, tf.int32)
shapes = ((1, 500, 201), (n_classes))
batch_size = 32
train_data = Dataset.from_generator(train_gen, output_types=types, output_shapes=shapes)
train_data = train_data.batch(batch_size)
# test
X, y = next(iter(train_data))
print(X.shape, y.shape)
Dataset.py
import os
import random
from skimage import io
import cv2
from skimage.transform import resize
import numpy as np
import tensorflow as tf
import keras
import Augmentor
def iter_sequence_infinite(seq):
"""Iterate indefinitely over a Sequence.
# Arguments
seq: Sequence object
# Returns
Generator yielding batches.
"""
while True:
for item in seq:
yield item
# data generator class
class DataGenerator(keras.utils.Sequence):
def __init__(self, ids, imgs_dir, masks_dir, batch_size=10, img_size=128, n_classes=1, n_channels=3, shuffle=True):
self.id_names = ids
self.indexes = np.arange(len(self.id_names))
self.imgs_dir = imgs_dir
self.masks_dir = masks_dir
self.batch_size = batch_size
self.img_size = img_size
self.n_classes = n_classes
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
# for printing the statistics of the function
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.id_names))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation__(self, id_name):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
img_path = os.path.join(self.imgs_dir, id_name) # polyp segmentation/images/id_name.jpg
mask_path = os.path.join(self.masks_dir, id_name) # polyp segmenatation/masks/id_name.jpg
img = io.imread(img_path)
mask = cv2.imread(mask_path)
p = Augmentor.DataPipeline([[img, mask]])
p.resize(probability=1.0, width=self.img_size, height=self.img_size)
p.rotate_without_crop(probability=0.3, max_left_rotation=10, max_right_rotation=10)
#p.random_distortion(probability=0.3, grid_height=10, grid_width=10, magnitude=1)
p.shear(probability=0.3, max_shear_left=1, max_shear_right=1)
#p.skew_tilt(probability=0.3, magnitude=0.1)
p.flip_random(probability=0.3)
sample_p = p.sample(1)
sample_p = np.array(sample_p).squeeze()
p_img = sample_p[0]
p_mask = sample_p[1]
augmented_mask = (p_mask // 255) * 255 # denoising
q = Augmentor.DataPipeline([[p_img]])
q.random_contrast(probability=0.3, min_factor=0.2, max_factor=1.0) # low to High
q.random_brightness(probability=0.3, min_factor=0.2, max_factor=1.0) # dark to bright
sample_q = q.sample(1)
sample_q = np.array(sample_q).squeeze()
image = sample_q
mask = augmented_mask[::, ::, 0]
"""
# reading the image from dataset
## Reading Image
image = io.imread(img_path) # reading image to image vaiable
image = resize(image, (self.img_size, self.img_size), anti_aliasing=True) # resizing input image to 128 * 128
mask = io.imread(mask_path, as_gray=True) # mask image of same size with all zeros
mask = resize(mask, (self.img_size, self.img_size), anti_aliasing=True) # resizing mask to fit the 128 * 128 image
mask = np.expand_dims(mask, axis=-1)
"""
# image normalization
image = image / 255.0
mask = mask / 255.0
return image, mask
def __len__(self):
"Denotes the number of batches per epoch"
return int(np.floor(len(self.id_names) / self.batch_size))
def __getitem__(self, index): # index : batch no.
# Generate indexes of the batch
# Generate indexes of the batch
indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
batch_ids = [self.id_names[k] for k in indexes]
imgs = list()
masks = list()
for id_name in batch_ids:
img, mask = self.__data_generation__(id_name)
imgs.append(img)
masks.append(np.expand_dims(mask,-1))
imgs = np.array(imgs)
masks = np.array(masks)
return imgs, masks # return batch
train.py
import argparse
import logging
import os
import sys
from tqdm import tqdm # progress bar
import numpy as np
import matplotlib.pyplot as plt
from keras import optimizers
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
import segmentation_models as sm
from segmentation_models.utils import set_trainable
from dataset import DataGenerator, iter_sequence_infinite
def train_model(model, train_gen, valid_gen, epochs, save_cp=True):
total_batch_count = 0
train_img_num = len(train_gen.id_names)
train_batch_num = len(train_gen)
train_gen_out = iter_sequence_infinite(train_gen)
valid_batch_num = len(valid_gen)
valid_img_num = len(valid_gen.id_names)
valid_gen_out = iter_sequence_infinite(valid_gen)
for epoch in range(epochs): # interation as many epochs
set_trainable(model)
epoch_loss = 0 # loss in this epoch
epoch_iou = 0
count = 0
with tqdm(total=train_img_num, desc=f'Epoch {epoch + 1}/{epochs}', position=0, leave=True, unit='img') as pbar: # make progress bar
for _ in range(train_batch_num):
batch = next(train_gen_out)
imgs = batch[0]
true_masks = batch[1]
loss, iou = model.train_on_batch(imgs, true_masks) # value of loss of this batch
epoch_loss += loss
epoch_iou += iou
pbar.set_postfix(**{'Batch loss': loss, 'Batch IoU': iou}) # floating the loss at the post in the pbar
pbar.update(imgs.shape[0]) # update progress
count += 1
total_batch_count += 1
train_gen.on_epoch_end()
print( "Epoch : loss: {}, IoU : {}".format(epoch_loss/count, epoch_iou/count))
# Do validation
validation_model(model, valid_gen_out, valid_batch_num, valid_img_num)
valid_gen.on_epoch_end()
if save_cp:
try:
if not os.path.isdir(checkpoint_dir):
os.mkdir(checkpoint_dir)
logging.info('Created checkpoint directory')
else:
pass
except OSError:
pass
model.save_weights(os.path.join(checkpoint_dir , f'CP_epoch{epoch + 1}.h5'))
logging.info(f'Checkpoint {epoch + 1} saved !')
def validation_model(model, valid_gen_out, valid_batch_num, valid_img_num):
epoch_loss = 0 # loss in this epoch
epoch_iou = 0
count = 0
with tqdm(total=valid_img_num, desc='Validation round', position=0, leave=True, unit='img') as pbar: # make progress bar
for _ in range(valid_batch_num):
batch = next(valid_gen_out)
imgs = batch[0]
true_masks = batch[1]
loss, iou = model.test_on_batch(imgs, true_masks) # value of loss of this batch
epoch_loss += loss
epoch_iou += iou
pbar.set_postfix(**{'Batch, loss': loss, 'Batch IoU': iou}) # floating the loss at the post in the pbar
pbar.update(imgs.shape[0]) # update progress
count += 1
print("Validation loss: {}, IoU: {}".format(epoch_loss / count, epoch_iou / count))
pred_mask = model.predict(np.expand_dims(imgs[0],0))
plt.subplot(131)
plt.imshow(imgs[0])
plt.subplot(132)
plt.imshow(true_masks[0].squeeze(), cmap="gray")
plt.subplot(133)
plt.imshow(pred_mask.squeeze(), cmap="gray")
plt.show()
print()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=50,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch_size', metavar='B', type=int, nargs='?', default=2,
help='Batch size', dest='batch_size')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=1e-5,
help='Learning rate', dest='lr')
parser.add_argument('-bb', '--backbone', default='resnet50', metavar='FILE',
help="backcone name")
parser.add_argument('-w', '--weight', dest='load', type=str, default=False,
help='Load model from a .h5 file')
parser.add_argument('-s', '--resizing', dest='resizing', type=int, default=384,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=20.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
img_dir = './data/train/imgs/' # ./data/train/imgs/CVC_Original/'
mask_dir = './data/train/masks/' # ./data/train/masks/CVC_Ground Truth/'
checkpoint_dir = './checkpoints'
args = get_args()
# train path
train_ids = os.listdir(img_dir)
# Validation Data Size
n_val = int(len(train_ids) * args.val/100) # size of validation set
valid_ids = train_ids[:n_val] # list of image ids used for validation of result 0 to 9
train_ids = train_ids[n_val:] # list of image ids used for training dataset
# print(valid_ids, "\n\n")
print("training_size: ", len(train_ids), "validation_size: ", len(valid_ids))
train_gen = DataGenerator(train_ids, img_dir, mask_dir, img_size=args.resizing, batch_size=args.batch_size)
valid_gen = DataGenerator(valid_ids, img_dir, mask_dir, img_size=args.resizing, batch_size=args.batch_size)
print("total training batches: ", len(train_gen))
print("total validaton batches: ", len(valid_gen))
train_steps = len(train_ids) // args.batch_size
valid_steps = len(valid_ids) // args.batch_size
# define model
model = sm.Unet(args.backbone, encoder_weights='imagenet')
optimizer = optimizers.Adam(lr=args.lr, decay=1e-4)
model.compile(
optimizer=optimizer,
# "Adam",
loss=sm.losses.bce_dice_loss, # sm.losses.bce_jaccard_loss, # sm.losses.binary_crossentropy,
metrics=[sm.metrics.iou_score],
)
#model.summary()
callbacks = [
EarlyStopping(patience=6, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=3, min_lr=1e-7, verbose=1),
ModelCheckpoint('./weights.Epoch{epoch:02d}-Loss{loss:.3f}-VIou{val_iou_score:.3f}.h5', verbose=1,
monitor='val_accuracy', save_best_only=True, save_weights_only=True)
]
train_model(model=model, train_gen=train_gen, valid_gen=valid_gen, epochs=args.epochs)
When I try to run this code, some epochs are well progressed but, in 20epochs, it occurs gpu memory overflow error like below
(0) Resource exhausted: OOM when allocating tensor with shape[2,64,96,96] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node decoder_stage2b_bn/FusedBatchNorm}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
so, I think that it is because of data generation.
This code generate batch in this order.
in train.py, initialize Datageneratr class which is sequence model that is implemented in Dataset.py
train_gen = DataGenerator(train_ids, img_dir, mask_dir, img_size=args.resizing, batch_size=args.batch_size)
valid_gen = DataGenerator(valid_ids, img_dir, mask_dir, img_size=args.resizing, batch_size=args.batch_size)
At the first in the function 'train_model' convert Datagenerator(sequence model) to generator with using function 'iter_sequence_infinite'
train_gen_out = iter_sequence_infinite(train_gen)
valid_gen_out = iter_sequence_infinite(valid_gen)
using magic-function, 'next', get batch
batch = next(train_gen_out)
I think that there will be no memory problem but it's occurred.
What is the problem and how to solve it?
Thanks.
I made a alphabet classification CNN model using Pytorch, and then use that model to test it with a single image that I've never seen before. I extracted a bounding box in my handwriting image with opencv, but I don't know how to apply it to the model.
bounded my_image
this is custom dataset
class CustomDatasetFromCSV(Dataset):
def __init__(self, csv_path, height, width, transforms=None):
"""
Args:
csv_path (string): path to csv file
height (int): image height
width (int): image width
transform: pytorch transforms for transforms and tensor conversion
"""
self.data = pd.read_csv(csv_path)
self.labels = np.asarray(self.data.iloc[:, 0])
self.height = height
self.width = width
self.transforms = transforms
def __getitem__(self, index):
single_image_label = self.labels[index]
# Read each 784 pixels and reshape the 1D array ([784]) to 2D array ([28,28])
img_as_np = np.asarray(self.data.iloc[index][1:]).reshape(28,28).astype('uint8')
# Convert image from numpy array to PIL image, mode 'L' is for grayscale
img_as_img = Image.fromarray(img_as_np)
img_as_img = img_as_img.convert('L')
# Transform image to tensor
if self.transforms is not None:
img_as_tensor = self.transforms(img_as_img)
# Return image and the label
return (img_as_tensor, single_image_label)
def __len__(self):
return len(self.data.index)
transformations = transforms.Compose([
transforms.ToTensor()
])
alphabet_from_csv = CustomDatasetFromCSV("/content/drive/My Drive/A_Z Handwritten Data.csv",
28, 28, transformations)
random_seed = 50
data_size = len(alphabet_from_csv)
indices = list(range(data_size))
split = int(np.floor(0.2 * data_size))
if True:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, test_indices = indices[split:], indices[:split]
train_dataset = SubsetRandomSampler(train_indices)
test_dataset = SubsetRandomSampler(test_indices)
train_loader = torch.utils.data.DataLoader(dataset = alphabet_from_csv,
batch_size = batch_size,
sampler = train_dataset)
test_loader = torch.utils.data.DataLoader(dataset = alphabet_from_csv,
batch_size = batch_size,
sampler = test_dataset)
this is my model
class ConvNet3(nn.Module):
def __init__(self, num_classes=26):
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 28, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(28),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(28, 56, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(56),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc = nn.Sequential(
nn.Dropout(p = 0.5),
nn.Linear(56 * 7 * 7, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(p = 0.5),
nn.Linear(512, 26),
)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
model = ConvNet3(num_classes).to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
def train():
# train phase
model.train()
# create a progress bar
batch_loss_list = []
progress = ProgressMonitor(length=len(train_dataset))
for batch, target in train_loader:
# Move the training data to the GPU
batch, target = batch.to(device), target.to(device)
# forward propagation
output = model( batch )
# calculate the loss
loss = loss_func( output, target )
# clear previous gradient computation
optimizer.zero_grad()
# backpropagate to compute gradients
loss.backward()
# update model weights
optimizer.step()
# update progress bar
batch_loss_list.append(loss.item())
progress.update(batch.shape[0], sum(batch_loss_list)/len(batch_loss_list) )
def test():
# test phase
model.eval()
correct = 0
# We don't need gradients for test, so wrap in
# no_grad to save memory
with torch.no_grad():
for batch, target in test_loader:
# Move the training batch to the GPU
batch, target = batch.to(device), target.to(device)
# forward propagation
output = model( batch )
# get prediction
output = torch.argmax(output, 1)
# accumulate correct number
correct += (output == target).sum().item()
# Calculate test accuracy
acc = 100 * float(correct) / len(test_dataset)
print( 'Test accuracy: {}/{} ({:.2f}%)'.format( correct, len(test_dataset), acc ) )
for epoch in range(num_epochs):
print("{}'s try".format(int(epoch)+1))
train()
test()
print("-----------------------------------------------------------------------------")
this is my image to bound
import cv2
import matplotlib.image as mpimg
im = cv2.imread('/content/drive/My Drive/my_handwritten.jpg')
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]
rects=[]
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if h < 20: continue
red = (0, 0, 255)
cv2.rectangle(im, (x, y), (x+w, y+h), red, 2)
rects.append((x,y,w,h))
cv2.imwrite('my_handwritten_bounding.png', im)
img_result = []
img_for_class = im.copy()
margin_pixel = 60
for rect in rects:
#[y:y+h, x:x+w]
img_result.append(
img_for_class[rect[1]-margin_pixel : rect[1]+rect[3]+margin_pixel,
rect[0]-margin_pixel : rect[0]+rect[2]+margin_pixel])
# Draw the rectangles
cv2.rectangle(im, (rect[0], rect[1]),
(rect[0] + rect[2], rect[1] + rect[3]), (0, 0, 255), 2)
count = 0
nrows = 4
ncols = 7
plt.figure(figsize=(12,8))
for n in img_result:
count += 1
plt.subplot(nrows, ncols, count)
plt.imshow(cv2.resize(n,(28,28)), cmap='Greys', interpolation='nearest')
plt.tight_layout()
plt.show()
You have already written the function test to test your net. The only thing you should do — create batch with one image with same preprocessing as images in your dataset.
def test_one_image(I, model):
'''
I - 28x28 uint8 numpy array
'''
# test phase
model.eval()
# convert image to torch tensor and add batch dim
batch = torch.tensor(I / 255).unsqueeze(0)
# We don't need gradients for test, so wrap in
# no_grad to save memory
with torch.no_grad():
batch = batch.to(device)
# forward propagation
output = model( batch )
# get prediction
output = torch.argmax(output, 1)
return output
I have written tensorflow code based on:
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
but using precomputed word embeddings from the GoogleNews word2vec 300 dimension model.
I created my own data from the UCML News Aggregator Dataset in which I parsed the content of the news articles and have created my own labels.
Due to the size of the articles I use TF-IDF to filter out the top 120 words per article and embed those into 300 dimensions.
When I run the CNN I created regardless of the hyper parameters it converges to a small general accuracy, around 38%.
Hyper parameters changed:
Various filter sizes:
I've tried a single filter of 1,2,3
Combinations of filters [3,4,5], [1,3,4]
Learning Rate:
I've varied this from very low to very high, very low doesn't converge to 38% but anything between 0.0001 and 0.4 does.
Batch Size:
Tried many ranges between 5 and 100.
Weight and Bias Initialization:
Set stddev of weights between 0.4 and 0.01.
Set bias initial values between 0 and 0.1.
Tried using the xavier initializer for the conv2d weights.
Dataset Size:
I have only tried on two partial data sets, one with 15 000 training data, and the other on the 5000 test data. In total I have 263 000 data to train on. There is no accuracy difference whether trained and evaluated on the 15 000 training data or by using the 5000 test data as the training data (to save testing time).
I've run successful classifications on the 15 000 / 5000 split using a feed forward network with a BoW input (93% accurate), TF-IDF with SVM (92%), and TF-IDF with Native Bayes (91.5%). So I don't think it is the data.
What does this imply? Is the model just a poor model for this task? Is there an error in my work?
I feel like my do_eval function is incorrect to evaluate the accuracy / loss over an epoch of the data:
def do_eval(data_set,
label_set,
batch_size):
"""
Runs one evaluation against the full epoch of data.
data_set: The set of embeddings to eval
label_set: the set of labels to eval
"""
# And run one epoch of eval.
true_count = 0 # Counts the number of correct predictions.
steps_per_epoch = len(label_set) // batch_size
num_examples = steps_per_epoch * batch_size
totalLoss = 0
# Need to compute eval accuracy
for evalStep in xrange(steps_per_epoch):
input_batch, label_batch = nextBatch(data_set, labels_set, batchSize)
evalAcc, evalLoss = eval_step(input_batch, label_batch)
true_count += evalAcc * batchSize
totalLoss += evalLoss
precision = float(true_count) / num_examples
print(' Num examples: %d Num correct: %d Precision # 1: %0.04f' % (num_examples, true_count, precision))
print("Eval Loss: " + str(totalLoss))
The entire model is as follows:
class TextCNN(object):
"""
A CNN for text classification
Uses a convolutional, max-pooling and softmax layer.
"""
def __init__(
self, batchSize, numWords, num_classes,
embedding_size, filter_sizes, num_filters):
# Set place holders
self.input_placeholder = tf.placeholder(tf.float32,[batchSize,numWords,embedding_size,1])
self.labels = tf.placeholder(tf.int32, [batchSize,num_classes])
self.pKeep = tf.placeholder(tf.float32)
# Inference
'''
Ready to build conv layers followed by max pooling layers
Each conv layer produces a different shaped output so need to loop over
them and create a layer for each and then merge the results
'''
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
# W: Filter matrix
W = tf.Variable(tf.truncated_normal(filter_shape,stddev=0.01), name='W')
b = tf.Variable(tf.constant(0.0,shape=[num_filters]),name="b")
# Valid padding: Narrow convolution (no edge padded so filter slides over everything)
# Output size = (input_size (numWords in this case) + 2 * padding (0 in this case) - filter_size) + 1
conv = tf.nn.conv2d(
self.input_placeholder,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity i.e add the bias to Wx + b
# Where Wx is the conv layer above
# Then run it through the activation function
h = tf.nn.relu(tf.nn.bias_add(conv, b),name='relu')
# Max-pooling over the outputs
# Max-pool to control the output size
# By taking only the best features determined by the filter
# Ksize is the size of the window of the input tensor
pooled = tf.nn.max_pool(
h,
ksize=[1, numWords - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
# Each pooled outputs a tensor of size
# [batchSize, 1, 1, num_filters] where num_filters represents the
# Number of features we wanted pooled
pooled_outputs.append(pooled)
# Combine all pooled features
num_filters_total = num_filters * len(filter_sizes)
# Concat the pool output along the 3rd (num_filters / feature size) dimension
self.h_pool = tf.concat(pooled_outputs, 3)
# Flatten
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Add drop out to regularize the learning curve / accuracy
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat,self.pKeep)
# Fully connected output layer
with tf.name_scope("output"):
W = tf.Variable(tf.truncated_normal([num_filters_total,num_classes],stddev=0.01),name="W")
b = tf.Variable(tf.constant(0.0,shape=[num_classes]), name='b')
self.logits = tf.nn.xw_plus_b(self.h_drop, W, b, name='logits')
self.predictions = tf.argmax(self.logits, 1, name='predictions')
# Loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.labels,logits=self.logits, name="xentropy")
self.loss = tf.reduce_mean(losses)
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.labels,1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
##################################################################################################################
# Running the training
# Define various parameters for network
batchSize = 100
numWords = 120
embedding_size = 300
num_classes = 4
filter_sizes = [3,4,5] # slide over a the number of words, i.e 3 words, 4 words etc...
num_filters = 126
maxSteps = 5000
initial_learning_rate = 0.001
dropoutRate = 1
data_set = np.load("/home/kevin/Documents/NSERC_2017/articles/classifyDataSet/TestSmaller_CNN_inputMat_0.npy")
labels_set = np.load("Test_NN_target_smaller.npy")
with tf.Graph().as_default():
sess = tf.Session()
with sess.as_default():
cnn = TextCNN(batchSize=batchSize,
numWords=numWords,
num_classes=num_classes,
num_filters=num_filters,
embedding_size=embedding_size,
filter_sizes=filter_sizes)
# Define training operation
# Pick an optimizer, set it's learning rate, and tell it what to minimize
global_step = tf.Variable(0,name='global_step', trainable=False)
optimizer = tf.train.AdamOptimizer(initial_learning_rate)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Summaries to save for tensor board
# Set directory
out_dir = "/home/kevin/Documents/NSERC_2017/articles/classifyDataSet/tf_logs/CNN_Embedding/"
# Loss and accuracy summaries
loss_summary = tf.summary.scalar("loss",cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
# Train summaries
train_summary_op = tf.summary.merge([loss_summary,acc_summary])
train_summary_dir = out_dir + "train/"
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Test summaries
test_summary_op = tf.summary.merge([loss_summary, acc_summary])
test_summary_dir = out_dir + "test/"
test_summary_write = tf.summary.FileWriter(test_summary_dir, sess.graph)
# Init all variables
init = tf.global_variables_initializer()
sess.run(init)
############################################################################################
def train_step(input_data, labels_data):
'''
Single training step
:param input_data: input
:param labels_data: labels to train to
'''
feed_dict = {
cnn.input_placeholder: input_data,
cnn.labels: labels_data,
cnn.pKeep: dropoutRate
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
feed_dict=feed_dict)
train_summary_writer.add_summary(summaries, step)
###############################################################################################
def eval_step(input_data, labels_data, writer=None):
"""
Evaluates model on a test set
Single step
"""
feed_dict = {
cnn.input_placeholder: input_data,
cnn.labels: labels_data,
cnn.pKeep: 1.0
}
step, summaries, loss, accuracy = sess.run(
[global_step, test_summary_op, cnn.loss, cnn.accuracy],
feed_dict)
if writer:
writer.add_summary(summaries, step)
return accuracy, loss
###############################################################################
def nextBatch(data_set, labels_set, batchSize):
'''
Get the next batch of data
:param data_set: entire training or test data set
:param labels_set: entire training or test label set
:param batchSize: batch size
:return: a batch of the data and it's corresponding labels
'''
# Generate random row indices for the documents
rand_index = np.random.choice(data_set.shape[0], size=batchSize)
# Grab the data to give to the feed dicts
data_batch, labels_batch = data_set[rand_index, :, :], labels_set[rand_index, :]
# Resize for tensorflow
data_batch = data_batch.reshape([data_batch.shape[0],data_batch.shape[1],data_batch.shape[2],1])
return data_batch, labels_batch
################################################################################
def do_eval(data_set,
label_set,
batch_size):
"""
Runs one evaluation against the full epoch of data.
data_set: The set of embeddings to eval
label_set: the set of labels to eval
"""
# And run one epoch of eval.
true_count = 0 # Counts the number of correct predictions.
steps_per_epoch = len(label_set) // batch_size
num_examples = steps_per_epoch * batch_size
totalLoss = 0
# Need to compute eval accuracy
for evalStep in xrange(steps_per_epoch):
input_batch, label_batch = nextBatch(data_set, labels_set, batchSize)
evalAcc, evalLoss = eval_step(input_batch, label_batch)
true_count += evalAcc * batchSize
totalLoss += evalLoss
precision = float(true_count) / num_examples
print(' Num examples: %d Num correct: %d Precision # 1: %0.04f' % (num_examples, true_count, precision))
print("Eval Loss: " + str(totalLoss))
######################################################################################################
# Training Loop
for step in range(maxSteps):
input_batch, label_batch = nextBatch(data_set,labels_set,batchSize)
train_step(input_batch,label_batch)
# Evaluate over the entire data set on last eval
if step % 100 == 0:
print "On Step : " + str(step) + " of " + str(maxSteps)
do_eval(data_set, labels_set,batchSize)
The embedding is done before the model:
def createInputEmbeddedMatrix(corpusPath, maxWords, svName):
# Create a [docNum, Words per Art, Embedding Size] matrix to fill
genDocsPath = "gen_docs_classifyData_smallerTest_TFIDF.npy"
# corpus = "newsCorpus_word2vec_All_Corpus.mm"
dictPath = 'news_word2vec_smallerDict.dict'
tf_idf_path = "news_tfIdf_word2vec_All.tfidf_model"
gen_docs = np.load(genDocsPath)
dictionary = gensim.corpora.dictionary.Dictionary.load(dictPath)
tf_idf = gensim.models.tfidfmodel.TfidfModel.load(tf_idf_path)
corpus = corpora.MmCorpus(corpusPath)
numOfDocs = len(corpus)
embedding_size = 300
id2embedding = np.load("smallerID2embedding.npy").item()
# Need to process in batches as takes up a ton of memory
step = 5000
totalSteps = int(np.ceil(numOfDocs / step))
for i in range(totalSteps):
# inputMatrix = scipy.sparse.csr_matrix([step,maxWords,embedding_size])
inputMatrix = np.zeros([step, maxWords, embedding_size])
start = i * step
end = start + step
for docNum in range(start, end):
print "On docNum " + str(docNum) + " of " + str(numOfDocs)
# Extract the top N words
topWords, wordVal = tf_idfTopWords(docNum, gen_docs, dictionary, tf_idf, maxWords)
# doc = corpus[docNum]
# Need to track word dex and doc dex seperate
# Doc dex because of the batch processing
wordDex = 0
docDex = 0
for wordID in wordVal:
inputMatrix[docDex, wordDex, :] = id2embedding[wordID]
wordDex += 1
docDex += 1
# Save the batch of input data
# scipy.sparse.save_npz(svName + "_%d" % i, inputMatrix)
np.save(svName + "_%d.npy" % i, inputMatrix)
#####################################################################################
Turns out my error was in the creation of the input matrix.
for i in range(totalSteps):
# inputMatrix = scipy.sparse.csr_matrix([step,maxWords,embedding_size])
inputMatrix = np.zeros([step, maxWords, embedding_size])
start = i * step
end = start + step
for docNum in range(start, end):
print "On docNum " + str(docNum) + " of " + str(numOfDocs)
# Extract the top N words
topWords, wordVal = tf_idfTopWords(docNum, gen_docs, dictionary, tf_idf, maxWords)
# doc = corpus[docNum]
# Need to track word dex and doc dex seperate
# Doc dex because of the batch processing
wordDex = 0
docDex = 0
for wordID in wordVal:
inputMatrix[docDex, wordDex, :] = id2embedding[wordID]
wordDex += 1
docDex += 1
docDex should not have been reset to 0 on each iteration of the inner loop, I was effectively overwriting the first row of my input matrix and thus the rest were 0's.