Why do I assign data directly to MutableState variable? - kotlin

I was told that MutableState just like MutableLiveData in Kotlin, and MutableState fit Compose, MutableLiveDataenter code here fit XML layout.
In Code A, I need to assign data to bb.value, but why do I assign directly to aa ?
Code A
private var aa by mutableStateOf(-1)
private var bb= MutableLiveData<Int>(-1)
fun onEditDone() {
aa = 2
bb.value = 2
}

It's because of Kotlin's delegation feature where you delegate values using by keyword.
Simple implementation for remember and mutableState, to display how it works when you build something similar to that, is as
// Delegation Functions for setting and getting value
operator fun <T> State<T>.getValue(thisObj: Any?, property: KProperty<*>): T = value
operator fun <T> MutableState<T>.setValue(thisObj: Any?, property: KProperty<*>, value: T) {
this.value = value
}
/*
* State
*/
interface State<out T> {
val value: T
}
interface MutableState<T> : State<T> {
override var value: T
}
class MutableStateImpl<T>(value: T) : MutableState<T> {
override var value: T = value
}
fun <T> mutableStateOf(value: T): MutableState<T> = MutableStateImpl(value)
/*
* Remember
*/
inline fun <T> remember(calculation: () -> T): T {
return calculation()
}
And you can use it as
fun main() {
val isSelected: MutableState<Boolean> = remember { mutableStateOf(true) }
isSelected.value = false
var selected by remember { mutableStateOf(false) }
selected = false
}

Related

Property getter simplification via delegation

I have many properties that follow this pattern, basically the only things that change from the template below are:
the initialized value
the property name
code
var foo: Double = 0.0
get() {
update()
return field
}
var foo2: Double = 1.23
get() {
update()
return field
}
question
is there any way that I can use delegation to to simplify (reduce the verbosity of) the code?
Sure
private fun <T> publishingDelegate(value: T): ReadWriteProperty<Any?, T> = object: ReadWriteProperty<Any?, T> {
private var initValue = value
override fun getValue(thisRef: Any?, property: KProperty<*>): T {
update()
return initValue
}
override fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {
update()
initValue = value
}
}
var foo: Double by publishingDelegate(0.0)
var foo2: Double by publishingDelegate(1.23)

Scope Resolution Operator in Kotlin

I have read the following syntax. I have no idea why scope resolution operator is used in it.
class XyzFragment : Fragment() {
lateinit var adapter: ChatAdapter
override fun onViewCreated(view: View?, savedInstanceState: Bundle?) {
if (!::adapter.isInitialized) { <-- This one
adapter = ChatAdapter(this, arrayListOf())
}
}
}
I want to know what is :: in if (!::adapter.isInitialized) { statement.
:: is a short form for this:: in Kotlin.
:: is a operator to creates a member reference or a class reference. For example,
class Test {
fun foo() {
}
fun foo2(value: Int) {
}
fun bar() {
val fooFunction = ::foo
fooFunction.invoke() // equals to this.foo()
val foo2Function = ::foo2
foo2Function.invoke(1) // equals to this.foo2(1)
val fooFunction2 = Test::foo
val testObject = Test()
fooFunction2.invoke(this) // equals to this.foo()
fooFunction2.invoke(testObject) // equals to testObject.foo()
}
}
This is mainly used in reflection and passing function.

Observable property allowing to add observers at runtime

Via Delegates.observable, Kotlin permits observable properties. I need, however, the ability of adding observers at runtime, as Java's Observable class does.
What I have now, is the following:
import java.util.*
import kotlin.reflect.KProperty
import kotlin.reflect.KProperty0
import kotlin.reflect.jvm.isAccessible
class MyObservable<T> (var v: T): java.util.Observable() {
operator fun getValue(thisRef: Any, prop: KProperty<*>) = v
operator fun setValue(thisRef: Any, prop: KProperty<*>, newValue: T) {
v = newValue
setChanged()
notifyObservers()
}
}
fun <T> addObserver(prop: KProperty0<T>, observerFn: (T) -> Unit) =
(prop.apply{ isAccessible = true }.getDelegate() as MyObservable<T>)
.addObserver(Observer({ o, _ -> observerFn((o as MyObservable<T>).v) }))
class ObservableExample {
var i: Int by MyObservable(3)
}
fun main(args: Array<String>) {
val ex: ObservableExample = ObservableExample();
addObserver(ex::i, { println(it) })
ex.i = 7
ex.i = 9
// prints:
// 7
// 9
}
It works, but it feels like reinventing the wheel.
Isn't there a standard solution for this?
If not, is what I've done correct?
A slightly shorter variant of the same idea:
import kotlin.properties.Delegates
typealias IntObserver = (Int) -> Unit
class ObservableExample {
val prop1Observers = mutableListOf<IntObserver>()
var prop1: Int by Delegates.observable(0) { prop, old, new ->
prop1Observers.forEach { it(new) }
}
}
fun main(args: Array<String>) {
val example = ObservableExample()
example.prop1Observers.add({ println(it) })
example.prop1 = 1
example.prop1 = 2
}
The output is as expected. Probably, it is better to make observers property private and add a method to add subscribers but I omitted it for the simplicity.
This is because you starts with a simple example, and can't find the benefits of Kotlin delegated properties.
Kotlin doesn't forcing you to implements any interface to supports delegated properties, yon can using delegated properties in Kotlin just provide getValue & setValue(?) operators. and their visibility even can be private.
Kotlin provided a provideDelegate operator function since 1.1, that let you manage/control how to create a delegate.
The delegate in Kotlin is working in the background, which means it is invisible from the source code point of view, and let the code source treat a delegated properties as a regular properties.
Kotlin delegated properties can easily let you manage java beans without using PropertyEditorSupport in Java, and you don't need to manage the delegate at all in Kotlin, just to notify the changed property only. for example:
val history = mutableMapOf<String, MutableList<Pair<Any?, Any?>>>()
val subject = Subject()
subject.subscribe { event ->
val each = history.getOrPut(event.propertyName) { mutableListOf() }
each.add(event.oldValue to event.newValue)
}
// v--- treat a delegated property as regular property
subject.number = 1
subject.string = "bar"
subject.number = 2
println(history);
// ^--- {"number":[<null,1>,<1,2>], "string": [<null,"bar">]}
Note: the getValue & setValue operator functions private below.
class Subject {
// v--- manage the delegated property internally
var string: String? by this
var number: Int? by this
private val properties by lazy {
mutableMapOf<Any?, Any?>()
}
private val listeners by lazy {
mutableListOf<PropertyChangeListener>()
}
private operator #Suppress("UNCHECKED_CAST")
fun <T : Any?> getValue(self: Any, prop: KProperty<*>): T {
return properties[prop.name] as T
}
private operator
fun <T : Any?> setValue(self: Any,prop: KProperty<*>, newValue: T) {
val event = PropertyChangeEvent(
self,
prop.name,
properties[prop.name],
newValue
)
properties[prop.name] = newValue
listeners.forEach { it.propertyChange(event) }
}
fun subscribe(listener: (event: PropertyChangeEvent) -> Unit) {
subscribe(PropertyChangeListener { listener(it) })
}
fun subscribe(subscriber: PropertyChangeListener) {
listeners.add(subscriber)
}
}

Kotlin nullable variable assignment

In Kotlin, is there any shorter syntax for this code:
if(swipeView == null){
swipeView = view.find<MeasureTypePieChart>(R.id.swipeableView)
}
First i tried this:
swipeView ?: view.find<MeasureTypePieChart>(R.id.swipeableView)
but then i realised that wasn't an assignment, so that code does nothing. Then i tried:
swipeView = swipeView ?: view.find<MeasureTypePieChart>(R.id.swipeableView)
Which works, but it a bit verbose. I would expect something like this:
swipeView ?= view.find<MeasureTypePieChart>
But unfortunately that doesn't work. Is there any way of accomplish this with a short syntax?
I know i can do this:
variable?.let { it = something } which works.
Shorter syntax would be to avoid swipeView from ever being null.
Local variable
If swipeView is a local variable then you can declare it non-null when initially assigning it:
val swipeView = ... ?: view.find<MeasureTypePieChart>(R.id.swipeableView)
Function argument
If swipeView is a function argument then you can use a default argument to ensure it is never null:
fun something(swipeView: View = view.find<MeasureTypePieChart>(R.id.swipeableView))
Class property
Read-only
If swipeView is a read-only class property (i.e. val) then you can use Kotlin's built-in Lazy:
val swipeView by lazy { view.find<MeasureTypePieChart>(R.id.swipeableView) }
Mutable
If swipeView is a mutable class property (i.e. var) then you can define your own delegate similar to Lazy but mutable. e.g. The following is based on kotlin/Lazy.kt:
interface MutableLazy<T> : Lazy<T> {
override var value: T
}
fun <T> mutableLazy(initializer: () -> T): MutableLazy<T> = SynchronizedMutableLazyImpl(initializer)
fun <T> mutableLazy(lock: Any?, initializer: () -> T): MutableLazy<T> = SynchronizedMutableLazyImpl(initializer, lock)
operator fun <T> MutableLazy<T>.getValue(thisRef: Any?, property: KProperty<*>): T = value
operator fun <T> MutableLazy<T>.setValue(thisRef: Any?, property: KProperty<*>, value: T) {
this.value = value
}
private object UNINITIALIZED_VALUE
private class SynchronizedMutableLazyImpl<T>(initializer: () -> T, lock: Any? = null) : MutableLazy<T>, Serializable {
private var initializer: (() -> T)? = initializer
#Volatile private var _value: Any? = UNINITIALIZED_VALUE
// final field is required to enable safe publication of constructed instance
private val lock = lock ?: this
override var value: T
get() {
val _v1 = _value
if (_v1 !== UNINITIALIZED_VALUE) {
#Suppress("UNCHECKED_CAST")
return _v1 as T
}
return synchronized(lock) {
val _v2 = _value
if (_v2 !== UNINITIALIZED_VALUE) {
#Suppress("UNCHECKED_CAST") (_v2 as T)
} else {
val typedValue = initializer!!()
_value = typedValue
initializer = null
typedValue
}
}
}
set(value) {
val _v1 = _value
if (_v1 !== UNINITIALIZED_VALUE) {
_value = value
} else synchronized(lock) {
_value = value
initializer = null
}
}
override fun isInitialized(): Boolean = _value !== UNINITIALIZED_VALUE
override fun toString(): String = if (isInitialized()) value.toString() else "MutableLazy value not initialized yet."
}
Usage:
var swipeView by mutableLazy { view.find<MeasureTypePieChart>(R.id.swipeableView) }
The initializer will only be called if swipeView is read and is not initialized yet (from a previous read or write).

Property include/exclude on Kotlin data classes

Suppose I only want one or two fields to be included in the generated equals and hashCode implementations (or perhaps exclude one or more fields). For a simple class, e.g.:
data class Person(val id: String, val name: String)
Groovy has this:
#EqualsAndHashCode(includes = 'id')
Lombok has this:
#EqualsAndHashCode(of = "id")
What is the idiomatic way of doing this in Kotlin?
My approach so far
data class Person(val id: String) {
// at least we can guarantee it is present at access time
var name: String by Delegates.notNull()
constructor(id: String, name: String): this(id) {
this.name = name
}
}
Just feels wrong though... I don't really want name to be mutable, and the extra constructor definition is ugly.
I've used this approach.
data class Person(val id: String, val name: String) {
override fun equals(other: Person) = EssentialData(this) == EssentialData(other)
override fun hashCode() = EssentialData(this).hashCode()
override fun toString() = EssentialData(this).toString().replaceFirst("EssentialData", "Person")
}
private data class EssentialData(val id: String) {
constructor(person: Person) : this(id = person.id)
}
This approach may be suitable for property exclusion:
class SkipProperty<T>(val property: T) {
override fun equals(other: Any?) = true
override fun hashCode() = 0
}
SkipProperty.equals simply returns true, which causes the embeded property to be skipped in equals of parent object.
data class Person(
val id: String,
val name: SkipProperty<String>
)
I also don't know "the idomatic way" in Kotlin (1.1) to do this...
I ended up overriding equals and hashCode:
data class Person(val id: String,
val name: String) {
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other?.javaClass != javaClass) return false
other as Person
if (id != other.id) return false
return true
}
override fun hashCode(): Int {
return id.hashCode()
}
}
Isn't there a "better" way?
This builds on #bashor's approach and uses a private primary and a public secondary constructor. Sadly the property to be ignored for equals cannot be a val, but one can hide the setter, so the result is equivalent from an external perspective.
data class ExampleDataClass private constructor(val important: String) {
var notSoImportant: String = ""
private set
constructor(important: String, notSoImportant: String) : this(important) {
this.notSoImportant = notSoImportant
}
}
Here's a somewhat creative approach:
data class IncludedArgs(val args: Array<out Any>)
fun includedArgs(vararg args: Any) = IncludedArgs(args)
abstract class Base {
abstract val included : IncludedArgs
override fun equals(other: Any?) = when {
this identityEquals other -> true
other is Base -> included == other.included
else -> false
}
override fun hashCode() = included.hashCode()
override fun toString() = included.toString()
}
class Foo(val a: String, val b : String) : Base() {
override val included = includedArgs(a)
}
fun main(args : Array<String>) {
val foo1 = Foo("a", "b")
val foo2 = Foo("a", "B")
println(foo1 == foo2) //prints "true"
println(foo1) //prints "IncludedArgs(args=[a])"
}
Reusable solution: to have an easy way to select which fields to include in equals() and hashCode(), I wrote a little helper called "stem" (essential core data, relevant for equality).
Usage is straightforward, and the resulting code very small:
class Person(val id: String, val name: String) {
private val stem = Stem(this, { id })
override fun equals(other: Any?) = stem.eq(other)
override fun hashCode() = stem.hc()
}
It's possible to trade off the backing field stored in the class with extra computation on-the-fly:
private val stem get() = Stem(this, { id })
Since Stem takes any function, you are free to specify how the equality is computed. For more than one field to consider, just add one lambda expression per field (varargs):
private val stem = Stem(this, { id }, { name })
Implementation:
class Stem<T : Any>(
private val thisObj: T,
private vararg val properties: T.() -> Any?
) {
fun eq(other: Any?): Boolean {
if (thisObj === other)
return true
if (thisObj.javaClass != other?.javaClass)
return false
// cast is safe, because this is T and other's class was checked for equality with T
#Suppress("UNCHECKED_CAST")
other as T
return properties.all { thisObj.it() == other.it() }
}
fun hc(): Int {
// Fast implementation without collection copies, based on java.util.Arrays.hashCode()
var result = 1
for (element in properties) {
val value = thisObj.element()
result = 31 * result + (value?.hashCode() ?: 0)
}
return result
}
#Deprecated("Not accessible; use eq()", ReplaceWith("this.eq(other)"), DeprecationLevel.ERROR)
override fun equals(other: Any?): Boolean =
throw UnsupportedOperationException("Stem.equals() not supported; call eq() instead")
#Deprecated("Not accessible; use hc()", ReplaceWith("this.hc(other)"), DeprecationLevel.ERROR)
override fun hashCode(): Int =
throw UnsupportedOperationException("Stem.hashCode() not supported; call hc() instead")
}
In case you're wondering about the last two methods, their presence makes the following erroneous code fail at compile time:
override fun equals(other: Any?) = stem.equals(other)
override fun hashCode() = stem.hashCode()
The exception is merely a fallback if those methods are invoked implicitly or through reflection; can be argued if it's necessary.
Of course, the Stem class could be further extended to include automatic generation of toString() etc.
Simpler, faster, look at there, or into the Kotlin documentation.
https://discuss.kotlinlang.org/t/ignoring-certain-properties-when-generating-equals-hashcode-etc/2715/2
Only fields inside the primary constructor are taken into account to build automatic access methods like equals and so on. Do keep the meaningless ones outside.
Here is another hacky approach if you don't want to touch the data class.
You can reuse the entire equals() from data classes while excluding some fields.
Just copy() the classes with fixed values for excluded fields:
data class Person(val id: String,
val name: String)
fun main() {
val person1 = Person("1", "John")
val person2 = Person("2", "John")
println("Full equals: ${person1 == person2}")
println("equals without id: ${person1.copy(id = "") == person2.copy(id = "")}")
}
Output:
Full equals: false
equals without id: true
Consider the following generic approach for the implementation of equals/hashcode. The code below should have no performance impact because of the use of inlining and kotlin value classes:
#file:Suppress("EXPERIMENTAL_FEATURE_WARNING")
package org.beatkit.common
import kotlin.jvm.JvmInline
#Suppress("NOTHING_TO_INLINE")
#JvmInline
value class HashCode(val value: Int = 0) {
inline fun combineHash(hash: Int): HashCode = HashCode(31 * value + hash)
inline fun combine(obj: Any?): HashCode = combineHash(obj.hashCode())
}
#Suppress("NOTHING_TO_INLINE")
#JvmInline
value class Equals(val value: Boolean = true) {
inline fun combineEquals(equalsImpl: () -> Boolean): Equals = if (!value) this else Equals(equalsImpl())
inline fun <A : Any> combine(lhs: A?, rhs: A?): Equals = combineEquals { lhs == rhs }
}
#Suppress("NOTHING_TO_INLINE")
object Objects {
inline fun hashCode(builder: HashCode.() -> HashCode): Int = builder(HashCode()).value
inline fun hashCode(vararg objects: Any?): Int = hashCode {
var hash = this
objects.forEach {
hash = hash.combine(it)
}
hash
}
inline fun hashCode(vararg hashes: Int): Int = hashCode {
var hash = this
hashes.forEach {
hash = hash.combineHash(it)
}
hash
}
inline fun <T : Any> equals(
lhs: T,
rhs: Any?,
allowSubclasses: Boolean = false,
builder: Equals.(T, T) -> Equals
): Boolean {
if (rhs == null) return false
if (lhs === rhs) return true
if (allowSubclasses) {
if (!lhs::class.isInstance(rhs)) return false
} else {
if (lhs::class != rhs::class) return false
}
#Suppress("unchecked_cast")
return builder(Equals(), lhs, rhs as T).value
}
}
With this in place, you can easily implement/override any equals/hashcode implementation in a uniform way:
data class Foo(val title: String, val bytes: ByteArray, val ignore: Long) {
override fun equals(other: Any?): Boolean {
return Objects.equals(this, other) { lhs, rhs ->
this.combine(lhs.title, rhs.title)
.combineEquals { lhs.bytes contentEquals rhs.bytes }
// ignore the third field for equals
}
}
override fun hashCode(): Int {
return Objects.hashCode(title, bytes) // ignore the third field for hashcode
}
}
You can create an annotation that represents the exclusion of the property as #ExcludeToString or with #ToString(Type.EXCLUDE) parameters by defining enum.
And then using reflection format the value of the getToString().
#Target(AnnotationTarget.FIELD)
#Retention(AnnotationRetention.RUNTIME)
annotation class ExcludeToString
data class Test(
var a: String = "Test A",
#ExcludeToString var b: String = "Test B"
) {
override fun toString(): String {
return ExcludeToStringUtils.getToString(this)
}
}
object ExcludeToStringUtils {
fun getToString(obj: Any): String {
val toString = LinkedList<String>()
getFieldsNotExludeToString(obj).forEach { prop ->
prop.isAccessible = true
toString += "${prop.name}=" + prop.get(obj)?.toString()?.trim()
}
return "${obj.javaClass.simpleName}=[${toString.joinToString(", ")}]"
}
private fun getFieldsNotExludeToString(obj: Any): List<Field> {
val declaredFields = obj::class.java.declaredFields
return declaredFields.filterNot { field ->
isFieldWithExludeToString(field)
}
}
private fun isFieldWithExludeToString(field: Field): Boolean {
field.annotations.forEach {
if (it.annotationClass == ExcludeToString::class) {
return true
}
}
return false
}
}
GL
Gist