suppose this is my data in a table in the database
...
01/01/2016 00:00 367.2647688
01/06/2016 12:30 739.8067639 < INCLUDE THIS
01/01/2018 03:00 412.9686137
01/01/2018 03:30 150.6068046
01/01/2018 04:00 79.22204568
01/01/2018 04:30 648.702222
01/01/2018 09:00 75.41931365
01/01/2018 09:30 923.9435812
01/01/2018 10:00 342.9116004
02/01/2018 02:00 776.4855197 < INCLUDE THIS
08/04/2021 02:30 206.2066933
02/01/2022 03:00 852.9874735
02/01/2022 03:30 586.0818207
02/01/2022 04:00 363.5394613
02/01/2023 04:30 874.3073237
...
and this is my query to fetch data
SELECT * FROM MYTABLE WHERE [DATETIME] >= '2018/01/01 03:00' AND [DATETIME] < '2018/01/01 11:00'
I would also like the query to return one date before and after this range. so like the dates padded.
Now how can i do this efficiently. One way could be to get the dates in the ranges and then get all the data where they are less then min date and get the highest datetime of those and add to main range table also repeating this process for the max date. is there any other way?
You can use lead() and lag():
SELECT *
FROM (SELECT t.*,
LAG(DATETIME, 1, DATETIME) OVER (ORDER BY DATETIME) as PREV_DATETIME,
LEAD(DATETIME, 1, DATETIME) OVER (ORDER BY DATETIME) as NEXT_DATETIME
FROM MYTABLE t
) t
WHERE NEXT_DATETIME >= '2018-01-01 03:00:00' AND
PREV_DATETIME <= '2018-01-01 10:00:00'
Note: This uses default values to simplify the logic.
Here is a db<>fiddle. Based on the results you specified, I changed the last comparison to <= from <.
Lag and lead are window functions that are used to get preceding and succeeding value of any row within its partition. So when we want pad rows outside the range we can set offset parameter in both lag and lead functions.
SELECT t.Datetime,t.val FROM (SELECT T.*,LAG(Datetime,1,Datetime) over (order by Datetime) as lagdate,lead(Datetime,1,Datetime)over (order by Datetime) as leaddate FROM Mytable T)t
WHERE leaddate>= '2018/01/01 03:00' and lagdate<='2018/01/01 11:00'
Related
I need help with my query to calculate the time until midnight between two date and time columns
break down by day
This is the main table:
ID
Start_Time
End_time
DateDiff
32221
01-01-2022 13:10:00
01-03-2022 13:10:00
2880
My query:
SELECT
start_time.ID,
start_time.Date_Time AS Start_time,
end_time.Date_Time AS End_time,
DATEDIFF(minute, start_time.Date_Time, end_time.Date_Time) AS DateDiff
FROM
Main
what I need is similar to this:
ID
Date_start
End_time
DateDiff
32221
01-01-2022 13:10:00
01-01-2022 23:59:59
654
32221
01-02-2022 00:00:00
01-02-2022 23:59:59
1440
32221
01-03-2022 00:00:00
01-03-2022 13:10:00
781
how i can do that?
You can loop through the times, always adding the time untill midnight, untill your 'start_time + 1 day' is bigger than your end_time.
The below code can be run directly in SQL (mind the date notation, my SQL is in united states notation, so if yours is in Europe this will give you back results for 3 months instead of 3 days);
DECLARE #start_time datetime2 = '01/01/2022 13:00:00';
DECLARE #end_time datetime2 = '03/01/2022 14:00:00';
DECLARE #daily_end_time datetime2=NULL;
DECLARE #Table Table (start_time datetime2, end_time datetime2, diff nvarchar(8));
DECLARE #diff_minutes_start int = DATEDIFF(MINUTE,#start_time,DateDiff(day,0,dateadd(day,1,#start_time)));
DECLARE #diff_minutes_end int = DATEDIFF(minute,#end_time,DateDiff(day,0,dateadd(day,1,#end_time)))
SET #daily_end_time = DATEADD(mi,#diff_minutes_start,#start_time)
WHILE #daily_end_time < #end_time
BEGIN
INSERT INTO #Table (start_time,end_time,diff)
VALUES (
#start_time,
CASE WHEN DATEADD(day,1,#daily_end_time) > #end_time THEN #end_time ELSE
#daily_end_time END,
CASE WHEN DATEADD(day,1,#daily_end_time) > #end_time THEN #diff_minutes_end ELSE
#diff_minutes_start END )
SET #daily_end_time = DATEADD(mi,#diff_minutes_start,#start_time)
SET #start_time = DATEADD(mi,1,#daily_end_time);
select #diff_minutes_start =
DATEDIFF(MINUTE,#start_time,DateDiff(day,0,dateadd(day,1,#start_time)));
select #diff_minutes_end = DATEDIFF(minute,#end_time,DateDiff(day,0,dateadd(day,1,#end_time)))
END
SELECT * FROM #Table
And the results:
You may use a recursive CTE as the following:
With CTE As
(
Select ID, Start_Time, End_time, DATEADD(Second, -1, DATEADD(Day, DATEDIFF(Day,0, Start_Time), 1)) et
From main
Union All
Select C.ID, DATEADD(Second, 1, C.et), C.End_time, DATEADD(Day, 1, C.et)
From CTE C Join main T
On C.ID = T.ID
Where DATEADD(Second, 1, C.et) <= C.End_time
)
Select ID, Start_Time,
Case When End_Time <= et Then End_Time Else et End As End_Time,
DATEDIFF(Minute, Start_Time, DATEADD(Second, 1, Case When End_Time <= et Then End_Time Else et End)) As [DateDiff]
From CTE
Order By ID, Start_Time
See a demo with extended data sample from db<>fiddle.
You can also solve this with a tally table, using the expanded (to show different cases) sample data
ID
StartTime
EndTime
32221
2022-01-01 13:10:00
2022-01-03 13:10:00
32222
2022-02-02 10:10:00
2022-02-02 17:10:00
32223
2022-03-03 19:10:00
2022-03-04 08:10:00
32224
2022-04-04 19:10:00
2022-04-08 08:10:00
and the code
with cteSampleData as ( --Enter some sample data, include spans of 0, 1, and >1 days
SELECT * --Note that we need CONVERT to make sure the dates are treated as datetime not string!
FROM (VALUES(32221, CONVERT(datetime2(0), '01-01-2022 13:10:00'), CONVERT(datetime2(0), '01-03-2022 13:10:00') )
, (32222, '02-02-2022 10:10:00', '02-02-2022 17:10:00')
, (32223, '03-03-2022 19:10:00', '03-04-2022 08:10:00')
, (32224, '04-04-2022 19:10:00', '04-08-2022 08:10:00')
) as Samp(ID, StartTime, EndTime)
), cteWithControl as ( --Add some fields to make testing cledarer - you could do this as part of a subsequent step instead
SELECT *
, CONVERT(date, StartTime) as StartDate , CONVERT(date, EndTime) as EndDate
, DATEDIFF(day, StartTime , EndTime) as DiffDays
--, DATEDIFF(day, CONVERT(date, StartTime) , CONVERT(date, EndTime)) as DiffDays
FROM cteSampleData
), cteTally as ( --Get a list of integers to represent days, assume nothing lasts longer than a year
SELECT top 365 ROW_NUMBER() over (ORDER BY name) as Tally
FROM sys.objects --just a table we know has over 300 rows, look up tally tables for other generation methods
)--The real work begins below, partition the data into "same day" and "multi-day" spans
, cteSet as (
SELECT ID, StartTime, EndTime, DiffDays, 1 as DayNumber
FROM cteWithControl WHERE DiffDays = 0
UNION ALL
SELECT ID --For multi-day, cross with the tally table and treat first and last days special
, CASE WHEN T.Tally = 1 THEN StartTime --For the first day the start time is the real time
ELSE DATEADD (day, T.Tally - 1, startdate) END as StartTime --Otherwise it's the start of the day
, CASE WHEN T.Tally = DiffDays + 1 THEN EndTime --For the last day the end is the real end
ELSE DATEADD (second, -1, CONVERT(DATETIME2(0), DATEADD (day, T.Tally, startdate)))
END as EndTime --otherwise 1 second less than the next day
, DiffDays, Tally as DayNumber
FROM cteWithControl as D CROSS JOIN cteTally as T
WHERE DiffDays > 0 AND T.Tally <= D.DiffDays + 1
)--Now we display the results and calculate the length (in minutes) of each span
SELECT *
, DATEDIFF(MINUTE, StartTime, EndTime) as DateDiff
FROM cteSet
ORDER BY ID, DayNumber
we get the output
ID
StartTime
EndTime
DiffDays
DayNumber
DateDiff
32221
2022-01-01 13:10:00
2022-01-01 23:59:59
2
1
649
32221
2022-01-02 00:00:00
2022-01-02 23:59:59
2
2
1439
32221
2022-01-03 00:00:00
2022-01-03 13:10:00
2
3
790
32222
2022-02-02 10:10:00
2022-02-02 17:10:00
0
1
420
32223
2022-03-03 19:10:00
2022-03-03 23:59:59
1
1
289
32223
2022-03-04 00:00:00
2022-03-04 08:10:00
1
2
490
32224
2022-04-04 19:10:00
2022-04-04 23:59:59
4
1
289
32224
2022-04-05 00:00:00
2022-04-05 23:59:59
4
2
1439
32224
2022-04-06 00:00:00
2022-04-06 23:59:59
4
3
1439
32224
2022-04-07 00:00:00
2022-04-07 23:59:59
4
4
1439
32224
2022-04-08 00:00:00
2022-04-08 08:10:00
4
5
490
I have a DateTime column and I use
select
convert(date,DateTime) as activity_date,
convert(varchar(8), convert(time,DateTime)) as activity_time,
from table
and I get these value
activity_date activity_time Value
02-22-22 10:00:00 2
02-22-22 11:00:00 10
02-22-23 10:00:00 8
02-22-23 11:00:00 6
Now I want
activity_hour Value
10:00:00 10
11:00:00 16
How can I sum the new column value?
If I understand correctly, you just need an aggregation query here:
SELECT CONVERT(time, DateTime) AS activity_time, SUM(Value) AS Value
FROM yourTable
GROUP BY CONVERT(time, DateTime)
ORDER BY CONVERT(time, DateTime);
Let's give a datetime 2019-04-22 00:00:00.000 (midnight of 22 April 2019)
Now I have a table of records that contains a StartDate and EndDate
ID StartDate EndDate
--------------------------------------------------------------------------
1 2019-04-15 00:00:00.000 2019-04-18 00:00:00.000
2 2019-04-16 00:00:00.000 2019-04-28 00:00:00.000
3 2019-04-23 00:00:00.000 2019-04-25 00:00:00.000
How can I split record with ID = 2 so that I get two records:
record one start date: 2019-04-16 00:00:00.000 and end date: 2019-04-21 23:59:59.000
record two start date: 2019-04-22 00:00:00.000 and end date: 2019-04-28 00:00:00.000
Basically if a range has the start date before 2019-04-22 00:00:00.000 and end date after 2019-04-22 00:00:00.000 then split that record into two records where the end date will be midnight before 2019-04-22 00:00:00.000 for the first record and start date will become 2019-04-22 00:00:00.000 for the second record.
I'd do a UNION ALL, where the first SELECT returns all rows starting before given datetime, and the second SELECT returns all rows ending after that datetime. Something like:
select id, startdate, case when EndDate < '2019-04-22 00:00:00.000' then EndDate
else '2019-04-22 00:00:00.000' end EndDate
from tablename
where startdate < '2019-04-22 00:00:00.000'
UNION ALL
select id, case when startdate > '2019-04-22 00:00:00.000' then startdate
else '2019-04-22 00:00:00.000' end,
EndDate
from tablename
where EndDate > '2019-04-22 00:00:00.000'
The case expressions are there to adjust start or end time for the overlapping rows, those who are splitted into two separate rows.
You can use the following solution:
DECLARE #splitDate DATE = '2019-04-22 00:00:00.000';
SELECT ID, StartDate, (select min(i) from (values (test.EndDate), (#splitDate)) AS T(i)) AS EndDate
FROM table_name WHERE StartDate < #splitDate
UNION ALL
SELECT ID, (select max(i) from (values (test.StartDate), (#splitDate)) AS T(i)) AS StartDate, EndDate
FROM table_name WHERE EndDate > #splitDate
demo on dbfiddle.uk
I'm not really a sql guy, so maybe what I'm trying to do is simple, but I can't find an easy solution.
I have a series of hourly data, between two dates. Something like this:
DATETIME VALUE
-------------------------
2014-01-01 01:00 104
2014-01-01 02:00 56
...
2014-01-04 23:00 65
2014-01-05 00:00 145
What I want is, for each hour, getting the average of the values of each day at that hour, so I end the query with something like this:
01:00 67.65
02:00 43.00
....
00:00 89.45
The "01:00" value will be the average of all the "01:00" values of each day, and so on.
The algorithm is easy, but my SQL skills are quite weak :-)
BONUS
It would be awesome if the answer would include a variation of the same problem: calculating the averages by weekdays and hour, and not only by hour:
Monday 01:00 34.23
Monday 02:00 54.34
...
Monday 23:00 241.34
Tuesday 00:00 89.43
....
Sunday 23:00 49.33
You can use datename , datepart and group by
select datename(weekday, [datetime]) as [Day],
datepart(hour, [datetime]) as [Hour],
avg(value) as AvgValue,
datepart(weekday, [datetime]) as [DayNo]
from table1
group by datename(weekday, [datetime]), datepart(weekday, [datetime]),
datepart(hour, [datetime])
order by datepart(weekday, [datetime]), datepart(hour, [datetime])
Below is an example of a general aggregate query you can use to group by a time interval.
WITH intervals AS (
SELECT DATEADD(hour, DATEDIFF(hour, '', DATETIME), '') AS TimeInterval
,VALUE
FROM dbo.Foo
)
SELECT
TimeInterval
, DATENAME(weekday, TimeInterval) AS Weekday
, CAST(TimeInterval AS time)
, AVG(VALUE) AS AvgValue
FROM intervals
GROUP BY TimeInterval
ORDER BY TimeInterval;
I'm, using Oracle 11g and I have this problem. I couldn't come up with any ideas to solve it yet.
I have a table with occupied classrooms. What I need to find are the hours available between a datetime range. For example, I have rooms A, B and C, the table of occupied classrooms looks like this:
Classroom start end
A 10/10/2013 10:00 10/10/2013 11:30
B 10/10/2013 09:15 10/10/2013 10:45
B 10/10/2013 14:30 10/10/2013 16:00
What I need to get is something like this:
with date time range between '10/10/2013 07:00' and '10/10/2013 21:15'
Classroom avalailable_from available_to
A 10/10/2013 07:00 10/10/2013 10:00
A 10/10/2013 11:30 10/10/2013 21:15
B 10/10/2013 07:00 10/10/2013 09:15
B 10/10/2013 10:45 10/10/2013 14:30
B 10/10/2013 16:00 10/10/2013 21:15
C 10/10/2013 07:00 10/10/2013 21:15
Is there a way I can accomplish that with sql or pl/sql?
I was looking at a solution similar in concept at least to Wernfried's, but I think it's different enough to post as well. The start is the same idea, first generating the possible time slots, and assuming you're looking at 15-minute windows: I'm using CTEs because I think they're clearer than nested selects, particularly with this many levels.
with date_time_range as (
select to_date('10/10/2013 07:00', 'DD/MM/YYYY HH24:MI') as date_start,
to_date('10/10/2013 21:15', 'DD/MM/YYYY HH24:MI') as date_end
from dual
),
time_slots as (
select level as slot_num,
dtr.date_start + (level - 1) * interval '15' minute as slot_start,
dtr.date_start + level * interval '15' minute as slot_end
from date_time_range dtr
connect by level <= (dtr.date_end - dtr.date_start) * (24 * 4) -- 15-minutes
)
select * from time_slots;
This gives you the 57 15-minute slots between the start and end date you specified. The CTE for date_time_range isn't strictly necessary, you could put your dates straight into the time_slots conditions, but you'd have to repeat them and that then introduces a possible failure point (and means binding the same value multiple times, from JDBC or wherever).
Those slots can then be cross-joined to the list of classrooms, which I'm assuming are already in another table, which gives you 171 (3x57) combinations; and those can be compared with existing bookings - once those are eliminated you're left with the 153 15-minute slots that have no booking.
with date_time_range as (...),
time_slots as (...),
free_slots as (
select c.classroom, ts.slot_num, ts.slot_start, ts.slot_end,
lag(ts.slot_end) over (partition by c.classroom order by ts.slot_num)
as lag_end,
lead(ts.slot_start) over (partition by c.classroom order by ts.slot_num)
as lead_start
from time_slots ts
cross join classrooms c
left join occupied_classrooms oc on oc.classroom = c.classroom
and not (oc.occupied_end <= ts.slot_start
or oc.occupied_start >= ts.slot_end)
where oc.classroom is null
)
select * from free_slots;
But then you have to collapse those into contiguous ranges. There are various ways of doing that; here I'm peeking at the previous and next rows to decide if a particular value is the edge of a range:
with date_time_range as (...),
time_slots as (...),
free_slots as (...),
free_slots_extended as (
select fs.classroom, fs.slot_num,
case when fs.lag_end is null or fs.lag_end != fs.slot_start
then fs.slot_start end as slot_start,
case when fs.lead_start is null or fs.lead_start != fs.slot_end
then fs.slot_end end as slot_end
from free_slots fs
)
select * from free_slots_extended
where (fse.slot_start is not null or fse.slot_end is not null);
Now we're down to 12 rows. (The outer where clause eliminates all 141 of the 153 slots from the previous step which are mid-range, since we only care about the edges):
CLASSROOM SLOT_NUM SLOT_START SLOT_END
--------- ---------- ---------------- ----------------
A 1 2013-10-10 07:00
A 12 2013-10-10 10:00
A 19 2013-10-10 11:30
A 57 2013-10-10 21:15
B 1 2013-10-10 07:00
B 9 2013-10-10 09:15
B 16 2013-10-10 10:45
B 30 2013-10-10 14:30
B 37 2013-10-10 16:00
B 57 2013-10-10 21:15
C 1 2013-10-10 07:00
C 57 2013-10-10 21:15
So those represent the edges, but on separate rows, and a final step combines them:
...
select distinct fse.classroom,
nvl(fse.slot_start, lag(fse.slot_start)
over (partition by fse.classroom order by fse.slot_num)) as slot_start,
nvl(fse.slot_end, lead(fse.slot_end)
over (partition by fse.classroom order by fse.slot_num)) as slot_end
from free_slots_extended fse
where (fse.slot_start is not null or fse.slot_end is not null)
Or putting all that together:
with date_time_range as (
select to_date('10/10/2013 07:00', 'DD/MM/YYYY HH24:MI') as date_start,
to_date('10/10/2013 21:15', 'DD/MM/YYYY HH24:MI') as date_end
from dual
),
time_slots as (
select level as slot_num,
dtr.date_start + (level - 1) * interval '15' minute as slot_start,
dtr.date_start + level * interval '15' minute as slot_end
from date_time_range dtr
connect by level <= (dtr.date_end - dtr.date_start) * (24 * 4) -- 15-minutes
),
free_slots as (
select c.classroom, ts.slot_num, ts.slot_start, ts.slot_end,
lag(ts.slot_end) over (partition by c.classroom order by ts.slot_num)
as lag_end,
lead(ts.slot_start) over (partition by c.classroom order by ts.slot_num)
as lead_start
from time_slots ts
cross join classrooms c
left join occupied_classrooms oc on oc.classroom = c.classroom
and not (oc.occupied_end <= ts.slot_start
or oc.occupied_start >= ts.slot_end)
where oc.classroom is null
),
free_slots_extended as (
select fs.classroom, fs.slot_num,
case when fs.lag_end is null or fs.lag_end != fs.slot_start
then fs.slot_start end as slot_start,
case when fs.lead_start is null or fs.lead_start != fs.slot_end
then fs.slot_end end as slot_end
from free_slots fs
)
select distinct fse.classroom,
nvl(fse.slot_start, lag(fse.slot_start)
over (partition by fse.classroom order by fse.slot_num)) as slot_start,
nvl(fse.slot_end, lead(fse.slot_end)
over (partition by fse.classroom order by fse.slot_num)) as slot_end
from free_slots_extended fse
where (fse.slot_start is not null or fse.slot_end is not null)
order by 1, 2;
Which gives:
CLASSROOM SLOT_START SLOT_END
--------- ---------------- ----------------
A 2013-10-10 07:00 2013-10-10 10:00
A 2013-10-10 11:30 2013-10-10 21:15
B 2013-10-10 07:00 2013-10-10 09:15
B 2013-10-10 10:45 2013-10-10 14:30
B 2013-10-10 16:00 2013-10-10 21:15
C 2013-10-10 07:00 2013-10-10 21:15
SQL Fiddle.
It is always a challenge when you like to "select something which does not exist". First you need a list of all available classrooms and times (in interval of 15 Minutes). Then you can select them by skipping the occupied items.
I managed to make a query without any PL/SQL:
CREATE TABLE Table1
(Classroom VARCHAR2(10), start_ts DATE, end_ts DATE);
INSERT INTO Table1 VALUES ('A', TIMESTAMP '2013-01-10 10:00:00', TIMESTAMP '2013-01-10 11:30:00');
INSERT INTO Table1 VALUES ('B', TIMESTAMP '2013-01-10 09:15:00', TIMESTAMP '2013-01-10 10:45:00');
INSERT INTO Table1 VALUES ('B', TIMESTAMP '2013-01-10 14:30:00', TIMESTAMP '2013-01-10 16:00:00');
WITH all_rooms AS
(SELECT CHR(64+LEVEL) AS ROOM FROM dual CONNECT BY LEVEL <= 3),
all_times AS
(SELECT CAST(TIMESTAMP '2013-01-10 07:00:00' + (LEVEL-1) * INTERVAL '15' MINUTE AS DATE) AS TIMES, LEVEL AS SLOT
FROM DUAL
CONNECT BY TIMESTAMP '2013-01-10 07:00:00' + (LEVEL-1) * INTERVAL '15' MINUTE <= TIMESTAMP '2013-01-10 21:15:00'),
all_free_slots AS
(SELECT ROOM, TIMES, SLOT,
CASE SLOT-LAG(SLOT, 1, 0) OVER (PARTITION BY ROOM ORDER BY SLOT)
WHEN 1 THEN 0
ELSE 1
END AS NEW_WINDOW
FROM all_times
CROSS JOIN all_rooms
WHERE NOT EXISTS
(SELECT 1 FROM TABLE1 WHERE ROOM = CLASSROOM AND TIMES BETWEEN START_TS + INTERVAL '1' MINUTE AND END_TS - INTERVAL '1' MINUTE)),
free_time_windows AS
(SELECT ROOM, TIMES, SLOT,
SUM(NEW_WINDOW) OVER (PARTITION BY ROOM ORDER BY SLOT) AS WINDOW_ID
FROM all_free_slots)
SELECT ROOM,
TO_CHAR(MIN(TIMES), 'yyyy-mm-dd hh24:mi') AS free_time_start,
TO_CHAR(MAX(TIMES), 'yyyy-mm-dd hh24:mi') AS free_time_end
FROM free_time_windows
GROUP BY ROOM, WINDOW_ID
HAVING MAX(TIMES) - MIN(TIMES) > 0
ORDER BY ROOM, 2;
ROOM FREE_TIME_START FREE_TIME_END
---- ----------------------------------
A 2013-01-10 07:00 2013-01-10 10:00
A 2013-01-10 11:30 2013-01-10 21:15
B 2013-01-10 07:00 2013-01-10 09:15
B 2013-01-10 10:45 2013-01-10 14:30
B 2013-01-10 16:00 2013-01-10 21:15
C 2013-01-10 07:00 2013-01-10 21:15
In order to understand the query you can split the sub-queries from top, e.g.
WITH all_rooms AS
(SELECT CHR(64+LEVEL) AS ROOM FROM dual CONNECT BY LEVEL <= 3),
all_times AS
(SELECT CAST(TIMESTAMP '2013-01-10 07:00:00' + (LEVEL-1) * INTERVAL '15' MINUTE AS DATE) AS TIMES, LEVEL AS SLOT
FROM DUAL
CONNECT BY TIMESTAMP '2013-01-10 07:00:00' + (LEVEL-1) * INTERVAL '15' MINUTE <= TIMESTAMP '2013-01-10 21:15:00')
SELECT ROOM, TIMES, SLOT,
CASE SLOT-LAG(SLOT, 1, 0) OVER (PARTITION BY ROOM ORDER BY SLOT)
WHEN 1 THEN 0
ELSE 1
END AS NEW_WINDOW
FROM all_times
CROSS JOIN all_rooms
WHERE NOT EXISTS (SELECT 1 FROM TABLE1 WHERE ROOM = CLASSROOM AND TIMES BETWEEN START_TS + INTERVAL '1' MINUTE AND END_TS - INTERVAL '1' MINUTE)
ORDER BY ROOM, SLOT