How exactly do references in flatbuffers work? - flatbuffers

According to the "Writing a schema" guide for Google FlatBuffers it is possible to share data using references: "Remember that you can share data (refer to the same string/table within a buffer), so factoring out repeating data into its own data structure may be worth it."
However, I don't quite understand how this is meant to be accomplished. I have a flatbuffer that I'm trying to reverse engineer and I discovered that there are multiple offsets pointing to the same string value. When I compile the decoded JSON file again, there are multiple occurences of that string. What exactly do I have to specify in the schema file to prevent this?
Thank you :)

JSON has no way to represent such references, so a buffer is "flattened" to a tree when output as JSON. Only at the binary level can a FlatBuffer represent a DAG. You can construct such a DAG simply by using a child offset twice in parent(s) while serializing.

Related

How to write data to file in Kotlin

A little while ago, I started learning Kotlin, and I have done its basics, variables, classes, lists, and arrays, etc. but the book I was learning from seemed to miss one important aspect, reading and writing to a file, maybe a function like "fwrite" in C++
So I searched google, and yes, reading and writing bytes were easy enough. However, I being used to C++'s open personality, wanted to make a "kind of" database.
In C++ I would simply make a struct and keep appending it to a file, and then read all the stored objects one by one, by placing "fread" in a for loop or just reading into an array of the struct in one go, as the struct was simply just the bytes allocated to the variables inside it.
However in Kotlin, there is no struct, instead, we use Data Class to group data. I was hoping there was an equally easy way to store data in a file in form of Data Class and read it into maybe a List of that class, or if that is not possible, maybe some other way to store grouped data that would be easy to read and write.
Easiest way is to use a serialization library. Kotlin already provides something for that
TL;DR;
Add KotlinX Serialization to your project, choose the serialization format you prefer (protobuf or cbor will fit, go for json if you prefer something more human readable although bigger in size), use the proper serializer for generating your ByteArray and write it to a file using Kotlin methods for that
Generating the ByteArray might be tricky, not sure as I'm telling this from memory. What I can tell for sure is that if you choose JSON you can get the string representation and write to a file. So I'm assuming the same will be valid for binary formats (but writing to a file in binary instead of strings)
What you need can be fulfilled by ROOM DATABASE
It is officially recommended by GOOGLE, It uses your Android application's internal Database which is made using SQLITE
You can read more info about ROOM at
https://developer.android.com/jetpack/androidx/releases/room?gclid=Cj0KCQjw5ZSWBhCVARIsALERCvwjmJqiRPAnSYjhOzhPXg8dJEYnqKVgcRxSmHRKoyCpnWAPQIWD4gAaAlBnEALw_wcB&gclsrc=aw.ds
It provided Data Object Class (DAO) and Entity Classes through which one can access the database TABLE using SQL Queries.
Also, it will check your queries at compile time for any errors in it.
Note: You need to have basic SQL Knowledge for building the queries for CRUD Operations

I want to load a YAML file, possibly edit the data, and then dump it again. How can I preserve formatting?

This question tries to collect information spread over questions about different languages and YAML implementations in a mostly language-agnostic manner.
Suppose I have a YAML file like this:
first:
- foo: {a: "b"}
- "bar": [1, 2, 3]
second: | # some comment
some long block scalar value
I want to load this file into an native data structure, possibly change or add some values, and dump it again. However, when I dump it, the original formatting is not preserved:
The scalars are formatted differently, e.g. "b" loses its quotation marks, the value of second is not a literal block scalar anymore, etc.
The collections are formatted differently, e.g. the mapping value of foo is written in block style instead of the given flow style, similarly the sequence value of "bar" is written in block style
The order of mapping keys (e.g. first/second) changes
The comment is gone
The indentation level differs, e.g. the items in first are not indented anymore.
How can I preserve the formatting of the original file?
Preface: Throughout this answer, I mention some popular YAML implementations. Those mentions are never exhaustive since I do not know all YAML implementations out there.
I will use YAML terms for data structures: Atomic text content (even numbers) is a scalar. Item sequences, known elsewhere as arrays or lists, are sequences. A collection of key-value pairs, known elsewhere as dictionary or hash, is a mapping.
If you are using Python, using ruamel will help you preserve quite some formatting since it implements round-tripping up to native structures. However, it isn't perfect and cannot preserve all formatting.
Background
The process of loading YAML is also a process of losing information. Let's have a look at the process of loading/dumping YAML, as given in the spec:
When you are loading a YAML file, you are executing some or all of the steps in the Load direction, starting at the Presentation (Character Stream). YAML implementations usually promote their most high-level APIs, which load the YAML file all the way to Native (Data Structure). This is true for most common YAML implementations, e.g. PyYAML/ruamel, SnakeYAML, go-yaml, and Ruby's YAML module. Other implementations, such as libyaml and yaml-cpp, only provide deserialization up to the Representation (Node Graph), possibly due to restrictions of their implementation languages (loading into native data structures requires either compile-time or runtime reflection on types).
The important information for us is what is contained in those boxes. Each box mentions information which is not available anymore in the box left to it. So this means that styles and comments, according to the YAML specification, are only present in the actual YAML file content, but are discarded as soon as the YAML file is parsed. For you, this means that once you have loaded a YAML file to a native data structure, all information about how it originally looked in the input file is gone. Which means that when you dump the data, the YAML implementation chooses a representation it deems useful for your data. Some implementations let you give general hints/options, e.g. that all scalars should be quoted, but that doesn't help you restore the original formatting.
Thankfully, this diagram only describes the logical process of loading YAML; a conforming YAML implementation does not need to slavishly conform to it. Most implementations actually preserve data longer than they need to. This is true for PyYAML/ruamel, SnakeYAML, go-yaml, yaml-cpp, libyaml and others. In all these implementations, the style of scalars, sequences and mappings is remembered up until the Representation (Node Graph) level.
On the other hand, comments are discarded rather early since they do not belong to an event or node (the exceptions here is ruamel which links comments to the following event, and go-yaml which remembers comments before, at and after the line that created a node). Some YAML implementations (libyaml, SnakeYAML) provide access to a token stream which is even more low-level than the Event Tree. This token stream does contain comments, however it is only usable for doing things like syntax highlighting, since the APIs do not contain methods for consuming the token stream again.
So what to do?
Loading & Dumping
If you need to only load your YAML file and then dump it again, use one of the lower-level APIs of your implementation to only load the YAML up until the Representation (Node Graph) or Serialization (Event Tree) level. The API functions to search for are compose/parse and serialize/present respectively.
It is preferable to use the Event Tree instead of the Node Graph as some implementations already forget the original order of mapping keys (due to internally using hashmaps) when composing. This question, for example, details loading / dumping events with SnakeYAML.
Information that is already lost in the event stream of your implementation, for example comments in most implementations, is impossible to preserve. Also impossible to preserve is scalar layout, like in this example:
"1 \x2B 1"
This loads as string "1 + 1" after resolving the escape sequence. Even in the event stream, the information about the escape sequence has already been lost in all implementations I know. The event only remembers that it was a double-quoted scalar, so writing it back will result in:
"1 + 1"
Similarly, a folded block scalar (starting with >) will usually not remember where line breaks in the original input have been folded into space characters.
To sum up, loading to the Event Tree and dumping again will usually preserve:
Style: unquoted/quoted/block scalars, flow/block collections (sequences & mappings)
Order of keys in mappings
YAML tags and anchors
You will usually lose:
Information about escape sequences and line breaks in flow scalars
Indentation and non-content spacing
Comments – unless the implementation specifically supports putting them in events and/or nodes
If you use the Node Graph instead of the Event Tree, you will likely lose anchor representations (i.e. that &foo may be written out as &a later with all aliases referring to it using *a instead of *foo). You might also lose key order in mappings. Some APIs, like go-yaml, don't provide access to the Event Tree, so you have no choice but to use the Node Graph instead.
Modifying Data
If you want to modify data and still preserve what you can of the original formatting, you need to manipulate your data without loading it to a native structure. This usually means that you operate on YAML scalars, sequences and mappings, instead of strings, numbers, lists or whatever structures the target programming language provides.
You have the option to either process the Event Tree or the Node Graph (assuming your API gives you access to it). Which one is better usually depends on what you want to do:
The Event Tree is usually provided as stream of events. It may be better for large data since you do not need to load the complete data in memory; instead you inspect each event, track your position in the input structure, and place your modifications accordingly. The answer to this question shows how to append items giving a path and a value to a given YAML file with PyYAML's event API.
The Node Graph is better for highly structured data. If you use anchors and aliases, they will be resolved there but you will probably lose information about their names (as explained above). Unlike with events, where you need to track the current position yourself, the data is presented as complete graph here, and you can just descend into the relevant sections.
In any case, you need to know a bit about YAML type resolution to work with the given data correctly. When you load a YAML file into a declared native structure (typical in languages with a static type system, e.g. Java or Go), the YAML processor will map the YAML structure to the target type if that's possible. However, if no target type is given (typical in scripting languages like Python or Ruby, but also possible in Java), types are deduced from node content and style.
Since we are not working with native loading because we need to preserve formatting information, this type resolution will not be executed. However, you need to know how it works in two cases:
When you need to decide on the type of a scalar node or event, e.g. you have a scalar with content 42 and need to know whether that is a string or integer.
When you need to create a new event or node that should later be loaded as a specific type. E.g. if you create a scalar containing 42, you might want to control whether that it is loaded as integer 42 or string "42" later.
I won't discuss all the details here; in most cases, it suffices to know that if a string is encoded as a scalar but looks like something else (e.g. a number), you should use a quoted scalar.
Depending on your implementation, you may come in touch with YAML tags. Seldom used in YAML files (they look like e.g. !!str, !!map, !!int and so on), they contain type information about a node which can be used in collections with heterogeneous data. More importantly, YAML defines that all nodes without an explicit tag will be assigned one as part of type resolution. This may or may not have already happened at the Node Graph level. So in your node data, you may see a node's tag even when the original node does not have one.
Tags starting with two exclamation marks are actually shorthands, e.g. !!str is a shorthand for tag:yaml.org,2002:str. You may see either in your data, since implementations handle them quite differently.
Important for you is that when you create a node or event, you may be able and may also need to assign a tag. If you don't want the output to contain an explicit tag, use the non-specific tags ! for non-plain scalars and ? for everything else on event level. On node level, consult your implementation's documentation about whether you need to supply resolved tags. If not, same rule for the non-specific tags applies. If the documentation does not mention it (few do), try it out.
So to sum up: You modify data by loading either the Event Tree or the Node Graph, you add, delete or modify events or nodes in the data you get, and then you present the modified data as YAML again. Depending on what you want to do, it may help you to create the data you want to add to your YAML file as native structure, serialize it to YAML and then load it again as Node Graph or Event Tree. From there, you can include it in the structure of the YAML file you want to modify.
Conclusion / TL;DR
YAML has not been designed for this task. In fact, it has been defined as a serialization language, assuming that your data is authored as native data structures in some programming language and from there dumped to YAML. However, in reality, YAML is used a lot for configuration, meaning that you typically write YAML by hand and then load it into native data structures.
This contrast is the reason why it is so difficult to modify YAML files while preserving formatting: The YAML format has been designed as transient data format, to be written by one application, and then to be loaded by another (or the same) application. In that process, preserving formatting does not matter. It does, however, for data that is checked-in to version control (you want your diff to only contain the line(s) with data you actually changed), and other situations where you write your YAML by hand, because you want to keep style consistent.
There is no perfect solution for changing exactly one data item in a given YAML file and leaving everything else intact. Loading a YAML file does not give you a view of the YAML file, it gives you the content it describes. Therefore, everything that is not part of the described content – most importantly, comments and whitespace – is extremely hard to preserve.
If format preservation is important to you and you can't live with the compromises made by the suggestions in this answer, YAML is not the right tool for you.
I would like to challenge the accepted answer. Whether you can preserve comments, the order of map keys, or other features depends on the YAML parsing library that you use. For starters, the library needs to give you access to the parsed YAML as a YAML Document, which is a collection of YAML nodes. These nodes can contain metadata besides the actual key/value pairs. The kinds of metadata that your library chooses to store will determine how much of the initial YAML document you can preserve. I will not speak for all languages and all libraries, but Golang's most popular YAML parsing library, go-yaml supports parsing YAML into a YAML document tree and serializing YAML document back, and preserves:
comments
the order of keys
anchors and aliases
scalar blocks
However, it does not preserve indentation, insignificant whitespace, and some other minor things. On the plus side, it allows modifying the YAML document and there's another library,
yaml-jsonpath that simplifies browsing the YAML node tree. Example:
import (
"github.com/stretchr/testify/assert"
"gopkg.in/yaml.v3"
"testing"
)
func Test1(t *testing.T) {
var n yaml.Node
y := []byte(`# Comment
t: &t
- x: 1 # anchor
a:
b: *t # alias
b: |
cccc
dddd
`)
err := yaml.Unmarshal(y, &n)
assert.NoError(t, err)
y2, _ := yaml.Marshal(&n)
assert.Equal(t, y, y2)
}

How to see all the possible options for schema metadata in tensorflow?

I am using tensorflow data validation and I am trying to build schemas around my datasets. I've built the initial schemas and I can see/edit them in notepad, but I'm having a hard time actually finding a resource that shows me exactly what kind of parameters I can set in the file for a given data type (ie min or max values or data shapes).
Does anyone know of a good resource or even a comprehensive schema I can use to further edit my schema file?
Schemas are just a kind of protocol buffers message, and they are defined within TensorFlow Metadata. You can find the protocol buffers definition in tensorflow_metadata/proto/v0/schema.proto, which describes and documents all the possible properties and options.

Liquibase load data in a format other than CSV

With the load data option that Liquibase provides, one can specify seed data in a CSV format. Is there a way I can provide say, a JSON or XML file with data that Liquibase would understand?
The use case is we are trying to put in some sample data which is hierarchical. E.g. Category - Subcategory relation which would require putting in parent id for all related categories. If there is a way to avoid including the ids in the seed data via say, JSON.
{
"MainCat1": ["SubCat11", "SubCat12"],
"MainCat2": ["SubCat21", "SubCat22"]
}
Very likely to have this as not supported (couldn't make Google help me) but is there a way to write a plugin or something that does this? Pointer to a guide (if any) would help.
NOTE: This is not about specifying the change log in that format.
This not currently supported and supporting it robustly would be pretty difficult. The main difficultly lies in the fact that Liquibase is designed to be database-platform agnostic, combined with the design goal of being able to generate the SQL required to do an operation without actually doing the operation live.
Inserting data like you want without knowing the keys and just generating SQL that could be run later is going to be very difficult, perhaps even impossible. I would suggest approaching Nathan, who is the main developer for Liquibase, more directly. The best way to do that might be through the JIRA bug database for Liquibase.
If you want to have a crack at implementing it, you could start by looking at the code for the LoadDataChange class (source in Github), which is where the CSV support currently lives.

Binary file & saved game formatting

I am working on a small roguelike game, and need some help with creating save games. I have tried several ways of saving games, but the load always fails, because I am not exactly sure what is a good way to mark the beginning of different sections for the player, entities, and the map.
What would be a good way of marking the beginning of each section, so that the data can read back reliably without knowing the length of each section?
Edit: The language is C++. It looks like a readable format would be a better shot. Thanks for all the quick replies.
The easiest solution is usually use a library to write the data using XML or INI, then compress it. This will be easier for you to parse, and result in smaller files than a custom binary format.
Of course, they will take slightly longer to load (though not much, unless your data files are 100's of MBs)
If you're determined to use a binary format, take a look at BER.
Are you really sure you need binary format?
Why not store in some text format so that it can be easily parseable, be it plain text, XML or YAML.
Since you're saving binary data you can't use markers without length.
Simply write the number of records of any type and then structured data, then it will be
easy to read again. If you have variable length elements like string the also need length information.
2
player record
player record
3
entities record
entities record
entities record
1
map
If you have a marker, you have to guarantee that the pattern doesn't exist elsewhere in your binary stream. If it does exist, you must use a special escape sequence to differentiate it. The Telnet protocol uses 0xFF to mark special commands that aren't part of the data stream. Whenever the data stream contains a naturally occurring 0xFF, then it must be replaced by 0xFFFF.
So you'd use a 2-byte marker to start a new section, like 0xFF01. If your reader sees 0xFF01, it's a new section. If it sees 0xFFFF, you'd collapse it into a single 0xFF. Naturally you can expand this approach to use any length marker you want.
(Although my personal preference is a text format (optionally compressed) or a binary format with length bytes instead of markers. I don't understand how you're serializing it without knowing when you're done reading a data structure.)