my aim is save a comment that start with any word and end with the "end" word like this
ANYWORD bla bla bla end
I have this grammar:
lexer grammar JunkLexer;
WS : [ \r\t\n]+ -> skip ;
LQUOTE : 'start' -> more, mode(START) ;
mode START;
STRING : 'end' -> mode(DEFAULT_MODE) ; // token we want parser to see
TEXT : . -> more ; // collect more text for string
but I don't know why, the lexer generates tokens that does not exists in the grammar:
when I checkout the lexer tokens, is the same:
WS=1
STRING=2
LQUOTE=3
'start'=3
'end'=2
Thank you in advance
When you define a lexer rule using a single string literal, that string literal becomes an alternative name for the rule. So when you define FOO: 'foo'; in the lexer grammar, you can then use FOO and 'foo' interchangeably in the parser grammar. This allows you to use string literals in your grammar even if you split it up into a parser and lexer grammar. So even though you have to write PLUS: '+'; in the lexer, you can still write exp '+' exp instead of exp PLUS exp in the grammar. The string literal name is also the one used when displaying the token because that tends to be more readable.
Of course that makes sense in the PLUS example, but doesn't really make sense in your example because, due to the more, your STRING rule doesn't actually just match end, but a whole string. So writing 'end' in the parser grammar to match a complete begin-end section would be utterly confusing (though it would work) and so is the fact that it's used as the token name. However ANTLR doesn't realize that because it doesn't realize that STRING can only be reached through rules invoking more.
Note that you can still use STRING to refer to the token, so this won't actually break your grammar in any way. It will lead to confusing error messages though ("missing 'end'" when it should be "missing STRING").
To work around that you can change the STRING rule to not only consist of a single string literal:
STRING: 'e' 'n' 'd';
This will be equivalent in every way, except that 'end' will no longer be an alias for STRING and will no longer be used as the display name of the token.
I have an antlr grammar with multiple lexer rules that match the same word. It can't be resolved during lexing, but with the grammar, it becomes unambiguous.
Example:
conversion: NUMBER UNIT CONVERT UNIT;
NUMBER: [0-9]+;
UNIT: 'in' | 'meters' | ......;
CONVERT: 'in';
Input: 1 in in meters
The word "in" matches the lexer rules UNIT and CONVERT.
How can this be solved while keeping the grammar file readable?
When an input matches two lexer rules, ANTLR chooses either the longest or the first, see disambiguate. With your grammar, in will be interpreted as UNIT, never CONVERT, and the rule
conversion: NUMBER UNIT CONVERT UNIT;
can't work because there are three UNIT tokens :
$ grun Question question -tokens -diagnostics input.txt
[#0,0:0='1',<NUMBER>,1:0]
[#1,1:1=' ',<WS>,channel=1,1:1]
[#2,2:3='in',<UNIT>,1:2]
[#3,4:4=' ',<WS>,channel=1,1:4]
[#4,5:6='in',<UNIT>,1:5]
[#5,7:7=' ',<WS>,channel=1,1:7]
[#6,8:13='meters',<UNIT>,1:8]
[#7,14:14='\n',<NL>,1:14]
[#8,15:14='<EOF>',<EOF>,2:0]
Question last update 0159
line 1:5 missing 'in' at 'in'
line 1:8 mismatched input 'meters' expecting <EOF>
What you can do is to have only ID or TEXT tokens and distinguish them with a label, like this :
grammar Question;
question
#init {System.out.println("Question last update 0132");}
: conversion NL EOF
;
conversion
: NUMBER unit1=ID convert=ID unit2=ID
{System.out.println("Quantity " + $NUMBER.text + " " + $unit1.text +
" to convert " + $convert.text + " " + $unit2.text);}
;
ID : LETTER ( LETTER | DIGIT | '_' )* ; // or TEXT : LETTER+ ;
NUMBER : DIGIT+ ;
NL : [\r\n] ;
WS : [ \t] -> channel(HIDDEN) ; // -> skip ;
fragment LETTER : [a-zA-Z] ;
fragment DIGIT : [0-9] ;
Execution :
$ grun Question question -tokens -diagnostics input.txt
[#0,0:0='1',<NUMBER>,1:0]
[#1,1:1=' ',<WS>,channel=1,1:1]
[#2,2:3='in',<ID>,1:2]
[#3,4:4=' ',<WS>,channel=1,1:4]
[#4,5:6='in',<ID>,1:5]
[#5,7:7=' ',<WS>,channel=1,1:7]
[#6,8:13='meters',<ID>,1:8]
[#7,14:14='\n',<NL>,1:14]
[#8,15:14='<EOF>',<EOF>,2:0]
Question last update 0132
Quantity 1 in to convert in meters
Labels are available from the rule's context in the visitor, so it is easy to distinguish tokens of the same type.
Based on the info in your question, it's hard to say what the best solution would be - I don't know what your lexer rules are, for example - nor can I tell why you have lexer rules that are ambiguous at all.
In my experience with antlr, lexer rules don't generally carry any semantic meaning; they are just text that matches some kind of regular expression. So, instead of having VARIABLE, METHOD_NAME, etc, I'd just have IDENTIFIER, and then figure it out at a higher level.
In other words, it seems (from the little I can glean from your question) that you might benefit either from replacing UNIT and CONVERT with grammar rules, or just having a single rule:
conversion: NUMBER TEXT TEXT TEXT
and validating the text values in your ANTLR listener/tree-walker/etc.
EDIT
Thanks for updating your question with lexer rules. It's clear now why it's failing - as BernardK points out, antlr will always choose the first matching lexer rule. This means it's impossible for the second of two ambiguous lexer rules to match, and makes your proposed design infeasible.
My opinion is that lexer rules are not the correct layer to do things like unit validation; they excel at structure, not content. Evaluating the parse tree will be much more practical than trying to contort an antlr grammar.
Finally, you might also do something with embedded actions on parse rules, like validating the value of an ID token against a known set of units. It could work, but would destroy the reusability of your grammar.
I have been starting to use ANTLR and have noticed that it is pretty fickle with its lexer rules. An extremely frustrating example is the following:
grammar output;
test: FILEPATH NEWLINE TITLE ;
FILEPATH: ('A'..'Z'|'a'..'z'|'0'..'9'|':'|'\\'|'/'|' '|'-'|'_'|'.')+ ;
NEWLINE: '\r'? '\n' ;
TITLE: ('A'..'Z'|'a'..'z'|' ')+ ;
This grammar will not match something like:
c:\test.txt
x
Oddly if I change TITLE to be TITLE: 'x' ; it still fails this time giving an error message saying "mismatched input 'x' expecting 'x'" which is highly confusing. Even more oddly if I replace the usage of TITLE in test with FILEPATH the whole thing works (although FILEPATH will match more than I am looking to match so in general it isn't a valid solution for me).
I am highly confused as to why ANTLR is giving such extremely strange errors and then suddenly working for no apparent reason when shuffling things around.
This seems to be a common misunderstanding of ANTLR:
Language Processing in ANTLR:
The Language Processing is done in two strictly separated phases:
Lexing, i.e. partitioning the text into tokens
Parsing, i.e. building a parse tree from the tokens
Since lexing must preceed parsing there is a consequence: The lexer is independent of the parser, the parser cannot influence lexing.
Lexing
Lexing in ANTLR works as following:
all rules with uppercase first character are lexer rules
the lexer starts at the beginning and tries to find a rule that matches best to the current input
a best match is a match that has maximum length, i.e. the token that results from appending the next input character to the maximum length match is not matched by any lexer rule
tokens are generated from matches:
if one rule matches the maximum length match the corresponding token is pushed into the token stream
if multiple rules match the maximum length match the first defined token in the grammar is pushed to the token stream
Example: What is wrong with your grammar
Your grammar has two rules that are critical:
FILEPATH: ('A'..'Z'|'a'..'z'|'0'..'9'|':'|'\\'|'/'|' '|'-'|'_'|'.')+ ;
TITLE: ('A'..'Z'|'a'..'z'|' ')+ ;
Each match, that is matched by TITLE will also be matched by FILEPATH. And FILEPATH is defined before TITLE: So each token that you expect to be a title would be a FILEPATH.
There are two hints for that:
keep your lexer rules disjunct (no token should match a superset of another).
if your tokens intentionally match the same strings, then put them into the right order (in your case this will be sufficient).
if you need a parser driven lexer you have to change to another parser generator: PEG-Parsers or GLR-Parsers will do that (but of course this can produce other problems).
This was not directly OP's problem, but for those who have the same error message, here is something you could check.
I had the same Mismatched Input 'x' expecting 'x' vague error message when I introduced a new keyword. The reason for me was that I had placed the new key word after my VARNAME lexer rule, which assigned it as a variable name instead of as the new keyword. I fixed it by putting the keywords before the VARNAME rule.
Surprise, I am building an SQL like language parser for a project.
I had it mostly working, but when I started testing it against real requests it would be handling, I realized it was behaving differently on the inside than I thought.
The main issue in the following grammar is that I define a lexer rule PCT_WITHIN for the language keyword 'pct_within'. This works fine, but if I try to match a field like 'attributes.pct_vac', I get the field having text of 'attributes.ac' and a pretty ANTLR error of:
line 1:15 mismatched character u'v' expecting 'c'
GRAMMAR
grammar Select;
options {
language=Python;
}
eval returns [value]
: field EOF
;
field returns [value]
: fieldsegments {print $field.text}
;
fieldsegments
: fieldsegment (DOT (fieldsegment))*
;
fieldsegment
: ICHAR+ (USCORE ICHAR+)*
;
WS : ('\t' | ' ' | '\r' | '\n')+ {self.skip();};
ICHAR : ('a'..'z'|'A'..'Z');
PCT_CONTAINS : 'pct_contains';
USCORE : '_';
DOT : '.';
I have been reading everything I can find on the topic. How the Lexer consumes stuff as it finds it even if it is wrong. How you can use semantic predication to remove ambiguity/how to use lookahead. But everything I read hasn't helped me fix this issue.
Honestly I don't see how it even CAN be an issue. I must be missing something super obvious because other grammars I see have Lexer rules like EXISTS but that doesn't cause the parser to take a string like 'existsOrNot' and spit out and IDENTIFIER with the text of 'rNot'.
What am I missing or doing completely wrong?
Convert your fieldsegment parser rule into a lexer rule. As it stands now it will accept input like
"abc
_ abc"
which is probably not what you want. The keyword "pct_contains" won't be matched by this rule since it is defined separately. If you want to accept the keyword in certain sequences as regular identifier you will have to include it in the accepted identifier rule.
How do you do something like this with ANTLR?
Example input:
title: hello world
Grammar:
header : IDENT ':' REST_OF_LINE ;
IDENT : 'a'..'z'+ ;
REST_OF_LINE : ~'\n'* '\n' ;
It fails, with line 1:0 mismatched input 'title: hello world\n' expecting IDENT
(I know ANTLR is overkill for parsing MIME-like headers, but this is just at the top of a more complex file.)
It fails, with line 1:0 mismatched input 'title: hello world\n' expecting IDENT
You must understand that the lexer operates independently from the parser. No matter what the parser would "like" to match at a certain time, the lexer simply creates tokens following some strict rules:
try to match tokens from top to bottom in the lexer rules (rules defined first are tried first);
match as much text as possible. In case 2 rules match the same amount of text, the rule defined first will be matched.
Because of rule 2, your REST_OF_LINE will always "win" from the IDENT rule. The only time an IDENT token will be created is when there's no more \n at the end. That is what's going wrong with your grammars: the error messages states that it expects a IDENT token, which isn't found (but a REST_OF_LINE token is produced).
I know ANTLR is overkill for parsing MIME-like headers, but this is just at the top of a more complex file.
You can't just define tokens (lexer rules) you want to apply to the header of a file. These tokens will also apply to the rest of the more complex file. Perhaps you should pre-process the header separately from the rest of the file?
antlr parsing is usually done in 2 steps.
1. construct your ast
2. define your grammer
pseudo code (been a few years since I played with antlr) - AST:
WORD : 'a'..'z'+ ;
SEPARATOR : ':';
SPACE : ' ';
pseudo code - tree parser:
header: WORD SEPARATOR WORD (SPACE WORD)+
Hope that helps....