How to change the mutable parameter in Pyomo (AbstractModel)? - optimization

I am trying to update my mutable parameter Nc in my Abstract model
the initial value is 4
I constructed the instance then change instance.Nc to 5 and solve it but it is still 4 (initial value) , can any body help ?
from pyomo.environ import *
import random
model = AbstractModel()
model.i = RangeSet(40)
model.j = Set(initialize=model.i)
model.x = Var(model.i,model.j, initialize=0,within=Binary)
model.y = Var(model.i, within=Binary)
model.Nc=Param(initialize=5,mutable=True)
def Ninit(model,i):
return random.randint(0,1)
model.N=Param(model.i,initialize=Ninit,mutable=True)
def Dinit(model,i,j):
return random.random()
model.D=Param(model.i,model.j,initialize=Dinit,mutable=True)
def rule_C1(model,i,j):
return model.x[i,j]<=model.N[i]*model.y[j]
model.C1 = Constraint(model.i,model.j,rule=rule_C1)
def rule_C2(model):
return sum(model.y[i] for i in model.i )==model.Nc
model.C2 = Constraint(rule=rule_C2)
def rule_C3(model,i):
return sum(model.x[i,j] for j in model.j)==model.N[i]
model.C3 = Constraint(model.i,rule=rule_C3)
def rule_OF(model):
return sum( model.x[i,j]*model.D[i,j] for i in model.i for j in model.j )
model.obj = Objective(rule=rule_OF, sense=minimize)
opt = SolverFactory('glpk')
#model.NC=4
instance = model.create_instance()
instance.NC=4
results = opt.solve(instance) # solves and updates instance
print('NC= ',value(instance.Nc))
print('OF= ',value(instance.obj))

It seems you are actually initializing your parmeter Nc to 5 (model.Nc=Param(initialize=5,mutable=True)) and then changing it to 4 once you create the instance (instance.Nc=4), so you might want to do the opposite (model.Nc=Param(initialize=4,mutable=True) then instance.Nc=4)
Also, note that you are inconsistantly addressing the Nc parameter throughout the code. When you declare the parameter you name it "Nc" (model.Nc=Param(initialize=5,mutable=True)), which is the actual python variable that Pyomo will use in the model, but later you try to change it with capital letters "NC", which is not a parameter (instance.NC=4). Minor typos like these can cause confusion and give you errors. Make sure to fix them and give it a try again

Related

In pyscipopt, would it be possible to use a function containing an optimization model inside of my main optimization model?

I am using Jupyter Notebook. I have tried defining a function with an optimization model, it seems to work outside of my main model. When I tried using the function on a variable inside my main model, at first the kernel dies, when I have updated Anaconda, it now seems to be doing nothing.
My function:
def optfunc(x):
mod = Model()
y = mod.addVar("y", ub = 2, lb = -1)
consl = mod.addCons(y + x <= 3, "cons")
mod.setObjective(y, "maximize")
mod.optimize()
sol = mod.getBestSol()
return mod.getSolVal(sol, y)
My main model:
mainfunc = Model()
n = mainfunc.addVar("n",lb=1,ub=3)
c = optfunc(n)
const = mainfunc.addCons(n + 0.5 == 1, "cons")
mainfunc.setObjective(n, "maximize")
mainfunc.optimize()
sol = mainfunc.getBestSol()
print(mainfunc.getSolVal(sol,n))
This does not work. You cannot have a Model inside another Model - especially, assigning a variable from the main Model (x) to be also a variable in the sub-model.

Numpy , OOP and callables

I'm implementing a Markov Chain Montecarlo with metropolis and barkes alphas for numerical integration. I've created a class called MCMCIntegrator(). I've loaded it with some attributes, one of then is the pdf of the function (a lambda) we're trying to integrate called g.
import numpy as np
import scipy.stats as st
class MCMCIntegrator:
def __init__(self):
self.g = lambda x: st.gamma.pdf(x, 0, 1, scale=1 / 1.23452676)*np.abs(np.cos(1.123454156))
self.size = 10000
self.std = 0.6
self.real_int = 0.06496359
There are other methods in this class, the size is the size of the sample that the class must generate, std is the standard deviation of the Normal Kernel, which you will see in a few seconds. The real_int is the value of the integral from 1 to 2 of the function we're integrating. I've generated it with a R script. Now, to the problem.
def _chain(self, method=None):
"""
Markov chain heat-up with burn-in
:param method: Metrpolis or barker alpha
:return: np.array containing the sample
"""
old = 0
sample = np.zeros(int(self.size * 1.5))
i = 0
if method:
def alpha(a, b): return min(1, self.g(b) / self.g(a))
else:
def alpha(a, b): return self.g(b) / (self.g(a) + self.g(b))
while i != len(sample):
if new < 0:
new = st.norm(loc=old, scale=self.std).rvs()
alpha = alpha(old, new)
u = st.uniform.rvs()
if alpha > u:
sample[i] = new
old = new
i += 1
return np.array(sample)
When I call the _chain() method, this is the following error:
44 while i != len(sample):
45 new = st.norm(loc=old, scale=self.std).rvs()
---> 46 alpha = alpha(old, new)
47 u = st.uniform.rvs()
48
TypeError: 'numpy.float64' object is not callable
alpha returns a nnumpy.float, but I don't know why it's saying it's not callable.
You define a method named alpha based on some condition in an 'early' section of the code:
if method:
def alpha(a, b): return min(1, self.g(b) / self.g(a))
else:
def alpha(a, b): return self.g(b) / (self.g(a) + self.g(b))
and then in the while loop (a 'later' part of the code), you assign the return value of this function to a variable named alpha.
Since the names of these two objects are same, and the variable has been declared later in the code, without the function being re-declared anywhere after this variable creation, the variable replaces the function in the namespace and now you can't make calls to alpha anymore, because it has ceased to be a function.
If it is not a hindrance to your program logic (doesn't seem to be), renaming the variable to some other nice name would be okay.

How to read parameters of layers of .tflite model in python

I was trying to read tflite model and pull all the parameters of the layers out.
My steps:
I generated flatbuffers model representation by running (please build flatc before):
flatc -python tensorflow/tensorflow/lite/schema/schema.fbs
Result is tflite/ folder that contains layer description files (*.py) and some utilitarian files.
I successfully loaded model:
in case of import Error: set PYTHONPATH to point to the folder where tflite/ is
from tflite.Model import Model
def read_tflite_model(file):
buf = open(file, "rb").read()
buf = bytearray(buf)
model = Model.GetRootAsModel(buf, 0)
return model
I partly pulled model and node parameters out and stacked in iterating over nodes:
Model part:
def print_model_info(model):
version = model.Version()
print("Model version:", version)
description = model.Description().decode('utf-8')
print("Description:", description)
subgraph_len = model.SubgraphsLength()
print("Subgraph length:", subgraph_len)
Nodes part:
def print_nodes_info(model):
# what does this 0 mean? should it always be zero?
subgraph = model.Subgraphs(0)
operators_len = subgraph.OperatorsLength()
print('Operators length:', operators_len)
from collections import deque
nodes = deque(subgraph.InputsAsNumpy())
STEP_N = 0
MAX_STEPS = operators_len
print("Nodes info:")
while len(nodes) != 0 and STEP_N <= MAX_STEPS:
print("MAX_STEPS={} STEP_N={}".format(MAX_STEPS, STEP_N))
print("-" * 60)
node_id = nodes.pop()
print("Node id:", node_id)
tensor = subgraph.Tensors(node_id)
print("Node name:", tensor.Name().decode('utf-8'))
print("Node shape:", tensor.ShapeAsNumpy())
# which type is it? what does it mean?
type_of_tensor = tensor.Type()
print("Tensor type:", type_of_tensor)
quantization = tensor.Quantization()
min = quantization.MinAsNumpy()
max = quantization.MaxAsNumpy()
scale = quantization.ScaleAsNumpy()
zero_point = quantization.ZeroPointAsNumpy()
print("Quantization: ({}, {}), s={}, z={}".format(min, max, scale, zero_point))
# I do not understand it again. what is j, that I set to 0 here?
operator = subgraph.Operators(0)
for i in operator.OutputsAsNumpy():
nodes.appendleft(i)
STEP_N += 1
print("-"*60)
Please point me to documentation or some example of using this API.
My problems are:
I can not get documentation on this API
Iterating over Tensor objects seems not possible for me, as it doesn't have Inputs and Outputs methods. + subgraph.Operators(j=0) I do not understand what j means in here. Because of that my cycle goes through two nodes: input (once) and the next one over and over again.
Iterating over Operator objects is surely possible:
Here we iterate over them all but I can not get how to map Operator and Tensor.
def print_in_out_info_of_all_operators(model):
# what does this 0 mean? should it always be zero?
subgraph = model.Subgraphs(0)
for i in range(subgraph.OperatorsLength()):
operator = subgraph.Operators(i)
print('Outputs', operator.OutputsAsNumpy())
print('Inputs', operator.InputsAsNumpy())
I do not understand how to pull parameters out Operator object. BuiltinOptions method gives me Table object, that I do not know what to map at.
subgraph = model.Subgraphs(0)
What does this 0 mean? should it always be zero? obviously no, but what is it? Id of the subgraph? If so - I'm happy. If no, please try to explain it.

How to map different indices in Pyomo?

I am a new Pyomo/Python user. Now I need to formulate one set of constraints with index 'n', where all of the 3 components are with different indices but correlate with index 'n'. I am just curious that how I can map the relationship between these sets.
In my case, I read csv files in which their indices are related to 'n' to generate my set. For example: a1.n1, a2.n3, a3.n5 /// b1.n2, b2.n4, b3.n6, b4.n7 /// c1.n1, c2.n2, c3.n4, c4.n6 ///. The constraint expression of index n1 and n2 is the follows for example:
for n1: P(a1.n1) + L(c1.n1) == D(n1)
for n2: - F(b1.n2) + L(c2.n2) == D(n2)
Now let's go the coding. The set creating codes are as follow, they are within a class:
import pyomo
import pandas
import pyomo.opt
import pyomo.environ as pe
class MyModel:
def __init__(self, Afile, Bfile, Cfile):
self.A_data = pandas.read_csv(Afile)
self.A_data.set_index(['a'], inplace = True)
self.A_data.sort_index(inplace = True)
self.A_set = self.A_data.index.unique()
... ...
Then I tried to map the relationship in the constraint construction like follows:
def createModel(self):
self.m = pe.ConcreteModel()
self.m.A_set = pe.Set( initialize = self.A_set )
def obj_rule(m):
return ...
self.m.OBJ = pe.Objective(rule = obj_rule, sense = pe.minimize)
def constr(m, n)
As = self.A_data.reset_index()
Amap = As[ As['n'] == n ]['a']
Bs = self.B_data.reset_index()
Bmap = Bs[ Bs['n'] == n ]['b']
Cs = self.C_data.reset_index()
Cmap = Cs[ Cs['n'] == n ]['c']
return sum(m.P[(p,n)] for p in Amap) - sum(m.F[(s,n)] for s in Bmap) + sum(m.L[(r,n)] for r in Cmap) == self.D_data.ix[n, 'D']
self.m.cons = pe.Constraint(self.m.D_set, rule = constr)
def solve(self):
... ...
Finally, the error raises when I run this:
KeyError: "Index '(1, 1)' is not valid for indexed component 'P'"
I know it is the wrong way, so I am wondering if there is a good way to map their relationships. Thanks in advance!
Gabriel
I just forgot to post my answer to my own question when I solved this one week ago. The key thing towards this problem is setting up a map index.
Let me just modify the code in the question. Firstly, we need to modify the dataframe to include the information of the mapped indices. Then, the set for the mapped index can be constructed, taking 2 mapped indices as example:
self.m.A_set = pe.Set( initialize = self.A_set, dimen = 2 )
The names of the two mapped indices are 'alpha' and 'beta' respectively. Then the constraint can be formulated, based on the variables declared at the beginning:
def constr(m, n)
Amap = self.A_data[ self.A_data['alpha'] == n ]['beta']
Bmap = self.B_data[ self.B_data['alpha'] == n ]['beta']
return sum(m.P[(i,n)] for i in Amap) + sum(m.L[(r,n)] for r in Bmap) == D.loc[n, 'D']
m.TravelingBal = pe.Constraint(m.A_set, rule = constr)
The summation groups all associated B to A with a mapped index set.

"Pythonic" way to "reset" an object's variables?

("variables" here refers to "names", I think, not completely sure about the definition pythonistas use)
I have an object and some methods. These methods all need and all change the object's variables. How can I, in the most pythonic and in the best, respecting the techniques of OOP, way achieve to have the object variables used by the methods but also keep their original values for the other methods?
Should I copy the object everytime a method is called? Should I save the original values and have a reset() method to reset them everytime a method needs them? Or is there an even better way?
EDIT: I was asked for pseudocode. Since I am more interested in understanding the concept rather than just specifically solving the problem I am encountering I am going to try give an example:
class Player():
games = 0
points = 0
fouls = 0
rebounds = 0
assists = 0
turnovers = 0
steals = 0
def playCupGame(self):
# simulates a game and then assigns values to the variables, accordingly
self.points = K #just an example
def playLeagueGame(self):
# simulates a game and then assigns values to the variables, accordingly
self.points = Z #just an example
self.rebounds = W #example again
def playTrainingGame(self):
# simulates a game and then assigns values to the variables, accordingly
self.points = X #just an example
self.rebounds = Y #example again
The above is my class for a Player object (for the example assume he is a basketball one). This object has three different methods that all assign values to the players' statistics.
So, let's say the team has two league games and then a cup game. I'd have to make these calls:
p.playLeagueGame()
p.playLeagueGame()
p.playCupGame()
It's obvious that when the second and the third calls are made, the previously changed statistics of the player need to be reset. For that, I can either write a reset method that sets all the variables back to 0, or copy the object for every call I make. Or do something completely different.
That's where my question lays, what's the best approach, python and oop wise?
UPDATE: I am suspicious that I have superovercomplicated this and I can easily solve my problem by using local variables in the functions. However, what happens if I have a function inside another function, can I use locals of the outer one inside the inner one?
Not sure if it's "Pythonic" enough, but you can define a "resettable" decorator
for the __init__ method that creates a copy the object's __dict__ and adds a reset() method that switches the current __dict__ to the original one.
Edit - Here's an example implementation:
def resettable(f):
import copy
def __init_and_copy__(self, *args, **kwargs):
f(self, *args)
self.__original_dict__ = copy.deepcopy(self.__dict__)
def reset(o = self):
o.__dict__ = o.__original_dict__
self.reset = reset
return __init_and_copy__
class Point(object):
#resettable
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return "%d %d" % (self.x, self.y)
class LabeledPoint(Point):
#resettable
def __init__(self, x, y, label):
self.x = x
self.y = y
self.label = label
def __str__(self):
return "%d %d (%s)" % (self.x, self.y, self.label)
p = Point(1, 2)
print p # 1 2
p.x = 15
p.y = 25
print p # 15 25
p.reset()
print p # 1 2
p2 = LabeledPoint(1, 2, "Test")
print p2 # 1 2 (Test)
p2.x = 3
p2.label = "Test2"
print p2 # 3 2 (Test2)
p2.reset()
print p2 # 1 2 (Test)
Edit2: Added a test with inheritance
I'm not sure about "pythonic", but why not just create a reset method in your object that does whatever resetting is required? Call this method as part of your __init__ so you're not duplicating the data (ie: always (re)initialize it in one place -- the reset method)
I would create a default dict as a data member with all of the default values, then do __dict__.update(self.default) during __init__ and then again at some later point to pull all the values back.
More generally, you can use a __setattr__ hook to keep track of every variable that has been changed and later use that data to reset them.
Sounds like you want to know if your class should be an immutable object. The idea is that, once created, an immutable object can't/should't/would't be changed.
On Python, built-in types like int or tuple instances are immutable, enforced by the language:
>>> a=(1, 2, 3, 1, 2, 3)
>>> a[0] = 9
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
As another example, every time you add two integers a new instance is created:
>>> a=5000
>>> b=7000
>>> d=a+b
>>> d
12000
>>> id(d)
42882584
>>> d=a+b
>>> id(d)
42215680
The id() function returns the address of the int object 12000. And every time we add a+b a new 12000 object instance is created.
User defined immutable classes must be enforced manually, or simply done as a convention with a source code comment:
class X(object):
"""Immutable class. Don't change instance variables values!"""
def __init__(self, *args):
self._some_internal_value = ...
def some_operation(self, arg0):
new_instance = X(arg0 + ...)
new_instance._some_internal_operation(self._some_internal_value, 42)
return new_instance
def _some_internal_operation(self, a, b):
"""..."""
Either way, it's OK to create a new instance for every operation.
See the Memento Design Pattern if you want to restore previous state, or the Proxy Design Pattern if you want the object to seem pristine, as if just created. In any case, you need to put something between what's referenced, and it's state.
Please comment if you need some code, though I'm sure you'll find plenty on the web if you use the design pattern names as keywords.
# The Memento design pattern
class Scores(object):
...
class Player(object):
def __init__(self,...):
...
self.scores = None
self.history = []
self.reset()
def reset(self):
if (self.scores):
self.history.append(self.scores)
self.scores = Scores()
It sounds like overall your design needs some reworking. What about a PlayerGameStatistics class that would keep track of all that, and either a Player or a Game would hold a collection of these objects?
Also the code you show is a good start, but could you show more code that interacts with the Player class? I'm just having a hard time seeing why a single Player object should have PlayXGame methods -- does a single Player not interact with other Players when playing a game, or why does a specific Player play the game?
A simple reset method (called in __init__ and re-called when necessary) makes a lot of sense. But here's a solution that I think is interesting, if a bit over-engineered: create a context manager. I'm curious what people think about this...
from contextlib import contextmanager
#contextmanager
def resetting(resettable):
try:
resettable.setdef()
yield resettable
finally:
resettable.reset()
class Resetter(object):
def __init__(self, foo=5, bar=6):
self.foo = foo
self.bar = bar
def setdef(self):
self._foo = self.foo
self._bar = self.bar
def reset(self):
self.foo = self._foo
self.bar = self._bar
def method(self):
with resetting(self):
self.foo += self.bar
print self.foo
r = Resetter()
r.method() # prints 11
r.method() # still prints 11
To over-over-engineer, you could then create a #resetme decorator
def resetme(f):
def rf(self, *args, **kwargs):
with resetting(self):
f(self, *args, **kwargs)
return rf
So that instead of having to explicitly use with you could just use the decorator:
#resetme
def method(self):
self.foo += self.bar
print self.foo
I liked (and tried) the top answer from PaoloVictor. However, I found that it "reset" itself, i.e., if you called reset() a 2nd time it would throw an exception.
I found that it worked repeatably with the following implementation
def resettable(f):
import copy
def __init_and_copy__(self, *args, **kwargs):
f(self, *args, **kwargs)
def reset(o = self):
o.__dict__ = o.__original_dict__
o.__original_dict__ = copy.deepcopy(self.__dict__)
self.reset = reset
self.__original_dict__ = copy.deepcopy(self.__dict__)
return __init_and_copy__
It sounds to me like you need to rework your model to at least include a separate "PlayerGameStats" class.
Something along the lines of:
PlayerGameStats = collections.namedtuple("points fouls rebounds assists turnovers steals")
class Player():
def __init__(self):
self.cup_games = []
self.league_games = []
self.training_games = []
def playCupGame(self):
# simulates a game and then assigns values to the variables, accordingly
stats = PlayerGameStats(points, fouls, rebounds, assists, turnovers, steals)
self.cup_games.append(stats)
def playLeagueGame(self):
# simulates a game and then assigns values to the variables, accordingly
stats = PlayerGameStats(points, fouls, rebounds, assists, turnovers, steals)
self.league_games.append(stats)
def playTrainingGame(self):
# simulates a game and then assigns values to the variables, accordingly
stats = PlayerGameStats(points, fouls, rebounds, assists, turnovers, steals)
self.training_games.append(stats)
And to answer the question in your edit, yes nested functions can see variables stored in outer scopes. You can read more about that in the tutorial: http://docs.python.org/tutorial/classes.html#python-scopes-and-namespaces
thanks for the nice input, as I had kind of a similar problem. I'm solving it with a hook on the init method, since I'd like to be able to reset to whatever initial state an object had. Here's my code:
import copy
_tool_init_states = {}
def wrap_init(init_func):
def init_hook(inst, *args, **kws):
if inst not in _tool_init_states:
# if there is a class hierarchy, only the outer scope does work
_tool_init_states[inst] = None
res = init_func(inst, *args, **kws)
_tool_init_states[inst] = copy.deepcopy(inst.__dict__)
return res
else:
return init_func(inst, *args, **kws)
return init_hook
def reset(inst):
inst.__dict__.clear()
inst.__dict__.update(
copy.deepcopy(_tool_init_states[inst])
)
class _Resettable(type):
"""Wraps __init__ to store object _after_ init."""
def __new__(mcs, *more):
mcs = super(_Resetable, mcs).__new__(mcs, *more)
mcs.__init__ = wrap_init(mcs.__init__)
mcs.reset = reset
return mcs
class MyResettableClass(object):
__metaclass__ = Resettable
def __init__(self):
self.do_whatever = "you want,"
self.it_will_be = "resetted by calling reset()"
To update the initial state, you could build some method like reset(...) that writes data into _tool_init_states. I hope this helps somebody. If this is possible without a metaclass, please let me know.