I am fairly new to data science. I am working on use-case of predicting sales demand using linear regression based on product no and store no as predictor. There can be many stores and products with numeric values. Do I need to standardize or scales these variables/predictors if theirs values are numeric, unbounded and at different scale? I believe if I try to use interaction term I will have standardize it?
Since these are categorical features, before using linear models you should encode this correctly to create a reasonable model. If you can encode these categorical features to give them linear correlation, then you can standardize it otherwise it wouldn't make sense. If you use tree-based models then you don't have to encode since they are able to discover nonlinear relationships.
Edit-note: You can try to use methods of mean-encodings. Methods like CV loop, Expanding mean, etc.
Related
I'm developing a regression model. But I ran into a problem when preparing the data. 17 out of 20 signs are categorical, and there are a lot of categories in each of them. Using one-hot-encoding, my data table is transformed into a 10000x6000 table. How should I prepare this type of data?
I used PCA, trying to reduce the dimension, but even 70% of the variance is in 2500 features. That's why I joined.
Unfortunately, I can't attach the dataset, as it is confidential
How do I prepare the data to achieve the best results in the learning process?
Can the data be mapped more accurately in a non-linear manner? If so, you might want to try using an autoencoder for dimensionality reduction.
One thing to note about PCA is that it computes an orthogonal projection of the data into linear space. This means that it only gives a linear mapping of the data. Autoencoders, on the other hand, can give you a non-linear mapping, and so is able to represent a greater amount of variance in the data in fewer dimensions. Just be sure to use non-linear activation functions in your autoencoder architecture.
It really depends on exactly what you are trying to do. Getting a covariance matrix (and also PCA decomp.) will give you great insight about which classes tend to come together (and this requires one-hot encoded categories), but training a model off of that might be problematic.
In general, it really depends on the model you want to use.
One option would be a random forest. They can definitely be used for regression, though they need to be trained specifically for that. SKLearn has a class just for this:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
The benifits of random forest is that it is great for tabular data (as is the case here), and can easily be trained using numerical values for class features, meaning your data vector can only be of dimension 20!
Decision tree models (such as random forest) are being shown to out-preform deep-learning in many cases, and this may be one of them.
TLDR; If you use a random forest, it can take learn even with numerical values for categories, and you can avoid creating incredibly large vectors for data.
I think the same purpose among sklearn.OneHotEncoder, pandas.get_dummies, and keras.to_categorical. But I don't know the difference.
Apart from the difference of the output/input type there is no difference, they all achieve the same result.
There's some technical difference:
Keras is very simple, you give him the target vector and he one -hot encodes it, use keras if you need to encode the labels vector.
Pandas is the most complex, it creates a new column for every class of the data, the good part is that works on dataframes where you want to one-hot only one of the columns (so you could say this is more of a multi purpose method, but not the preferable option if you need to train a NN)
Sklearn lets you one-hot encode multiple features in the same variable, is a bit more flexible that the use keras offers, if the method from keras is too simple try with sklearn, if keras is enough stick with it.
Here's the situation I am worrying about.
Let me say I have a model trained with min-max scaled data. I want to test my model, so I also scaled the test dataset with my old scaler which was used in the training stage. However, my new test data's turned out to be the newer minimum, so the scaler returned negative value.
As far as I know, minimum and maximum aren't that stable value, especially in the volatile dataset such as cryptocurrency data. In this case, should I update my scaler? Or should I retrain my model?
I happen to disagree with #Sharan_Sundar. The point of scaling is to bring all of your features onto a single scale, not to rigorously ensure that they lie in the interval [0,1]. This can be very important, especially when considering regularization techniques the penalize large coefficients (whether they be linear regression coefficients or neural network weights). The combination of feature scaling and regularization help to ensure your model generalizes to unobserved data.
Scaling based on your "test" data is not a great idea because in practice, as you pointed out, you can easily observe new data points that don't lie within the bounds of your original observations. Your model needs to be robust to this.
In general, I would recommend considering different scaling routines. scikitlearn's MinMaxScaler is one, as is StandardScaler (subtract mean and divide by standard deviation). In the case where your target variable, cryptocurrency price can vary over multiple orders of magnitude, it might be worth using the logarithm function for scaling some of your variables. This is where data science becomes an art -- there's not necessarily a 'right' answer here.
(EDIT) - Also see: Do you apply min max scaling separately on training and test data?
Ideally you should scale first and then only split into test and train. But its not preferable to use minmax scaler with data which can have dynamically varying min and max values with significant variance in realtime scenario.
So I have already performed a multiple linear regression in Python using LinearRegression from sklearn.
My independant variables were all numerical (and so was my dependant one)
But now I'd like to perform a multiple linear regression combining numerical and non numerical independant variables.
Therefore I have several questions:
If I use dummy variables or One-Hot for the non-numerical ones, will I then be able to perform the LinearRegression from sklearn?
If yes, do I have to change some parameters?
If not, how should I perform the Linear Regression?
One thing that bother me is that dummy/one-hot methods don't deal with ordinal variables, right? (Because it shouldn't be encoded the same way in my opinion)
Problem is: Even if I want to encode diffently nominal and ordinal variables,
it seems impossible for Python to tell the difference between both of them?
This stuff might be easy for you but right now as you could tell I'm a little confused so I could really use your help !
Thanks in advance,
Alex
If I use dummy variables or One-Hot for the non-numerical ones, will I then be able to perform the LinearRegression from sklearn?
In fact the model has to be fed exclusively with numerical data, thus you must use OneHot vectors for the categorical data in your input features. For that you can take a look at Scikit-Learn's LabelEncoder and OneHotEncoder.
One thing that bother me is that dummy/one-hot methods don't deal with ordinal variables, right? (Because it shouldn't be encoded the same way in my opinion)
Yes. As you mention one-hot methods don't deal with ordinal variables. One way to work with ordinal features is to create a scale map, and map those features to that scale. Ordinal is a very useful tool for these cases. You can feed it a mapping dictionary according to a predifined scale mapping as mentioned. Otherwise, obviously it randomly assigns integers to the different categories as it has no knowledge to infer any order. From the documentation:
Ordinal encoding uses a single column of integers to represent the classes. An optional mapping dict can be passed in, in this case we use the knowledge that there is some true order to the classes themselves. Otherwise, the classes are assumed to have no true order and integers are selected at random.
Hope this helps.
I have a dataset with lots of features (mostly categorical features(Yes/No)) and lots of missing values.
One of the techniques for dimensionality reduction is to generate a large and carefully constructed set of trees against a target attribute and then use each attribute’s usage statistics to find the most informative subset of features. That is basically we can generate a large set of very shallow trees, with each tree being trained on a small fraction of the total number of attributes. If an attribute is often selected as best split, it is most likely an informative feature to retain.
I am also using an imputer to fill the missing values.
My doubt is what should be the order to the above two. Which of the above two (dimensionality reduction and imputation) to do first and why?
From mathematical perspective you should always avoid data imputation (in the sense - use it only if you have to). In other words - if you have a method which can work with missing values - use it (if you do not - you are left with data imputation).
Data imputation is nearly always heavily biased, it has been shown so many times, I believe that I even read paper about it which is ~20 years old. In general - in order to do a statistically sound data imputation you need to fit a very good generative model. Just imputing "most common", mean value etc. makes assumptions about the data of similar strength to the Naive Bayes.