Is it possible to turn quartely data to monthly? - pandas
I'm struggling with this problem and I'm not sure if I'm approaching it correctly.
I have this dataset:
ticker date filing_date_x currency_symbol_x researchdevelopment effectofaccountingcharges incomebeforetax minorityinterest netincome sellinggeneraladministrative grossprofit ebit nonoperatingincomenetother operatingincome otheroperatingexpenses interestexpense taxprovision interestincome netinterestincome extraordinaryitems nonrecurring otheritems incometaxexpense totalrevenue totaloperatingexpenses costofrevenue totalotherincomeexpensenet discontinuedoperations netincomefromcontinuingops netincomeapplicabletocommonshares preferredstockandotheradjustments filing_date_y currency_symbol_y totalassets intangibleassets earningassets othercurrentassets totalliab totalstockholderequity deferredlongtermliab ... totalcurrentliabilities shorttermdebt shortlongtermdebt shortlongtermdebttotal otherstockholderequity propertyplantequipment totalcurrentassets longterminvestments nettangibleassets shortterminvestments netreceivables longtermdebt inventory accountspayable totalpermanentequity noncontrollinginterestinconsolidatedentity temporaryequityredeemablenoncontrollinginterests accumulatedothercomprehensiveincome additionalpaidincapital commonstocktotalequity preferredstocktotalequity retainedearningstotalequity treasurystock accumulatedamortization noncurrrentassetsother deferredlongtermassetcharges noncurrentassetstotal capitalleaseobligations longtermdebttotal noncurrentliabilitiesother noncurrentliabilitiestotal negativegoodwill warrants preferredstockredeemable capitalsurpluse liabilitiesandstockholdersequity cashandshortterminvestments propertyplantandequipmentgross accumulateddepreciation commonstocksharesoutstanding
116638 JNJ.US 2019-12-31 2020-02-18 USD 3.232000e+09 NaN 4.218000e+09 NaN 4.010000e+09 6.039000e+09 1.363200e+10 6.119000e+09 6.500000e+07 4.238000e+09 NaN 85000000.0 208000000.0 81000000.0 -4000000.0 NaN 104000000.0 NaN 208000000.0 2.074700e+10 9.414000e+09 7.115000e+09 -1.200000e+08 NaN 4.010000e+09 4.010000e+09 NaN 2020-02-18 USD 1.577280e+11 4.764300e+10 NaN 2.486000e+09 9.825700e+10 5.947100e+10 5.958000e+09 ... 3.596400e+10 1.202000e+09 1.202000e+09 NaN -1.589100e+10 1.765800e+10 4.527400e+10 1.149000e+09 -2.181100e+10 1.982000e+09 1.448100e+10 2.649400e+10 9.020000e+09 3.476200e+10 NaN NaN NaN NaN NaN 3.120000e+09 NaN 1.106590e+11 -3.841700e+10 NaN 5.695000e+09 7.819000e+09 1.124540e+11 NaN 2.649400e+10 2.984100e+10 6.229300e+10 NaN NaN NaN NaN 1.577280e+11 1.928700e+10 NaN NaN 2.632507e+09
116569 JNJ.US 2020-03-31 2020-04-29 USD 2.580000e+09 NaN 6.509000e+09 NaN 5.796000e+09 5.203000e+09 1.364400e+10 8.581000e+09 7.460000e+08 5.788000e+09 NaN 25000000.0 713000000.0 67000000.0 42000000.0 300000000.0 58000000.0 NaN 713000000.0 2.069100e+10 7.135000e+09 7.047000e+09 6.210000e+08 NaN 5.796000e+09 5.796000e+09 NaN 2020-04-29 USD 1.550170e+11 4.733800e+10 NaN 2.460000e+09 9.372300e+10 6.129400e+10 5.766000e+09 ... 3.368900e+10 2.190000e+09 2.190000e+09 NaN -1.624300e+10 1.740100e+10 4.422600e+10 NaN -1.951500e+10 2.494000e+09 1.487400e+10 2.539300e+10 8.868000e+09 3.149900e+10 NaN NaN NaN NaN NaN 3.120000e+09 NaN 1.129010e+11 -3.848400e+10 NaN 5.042000e+09 NaN 7.539000e+09 NaN 2.539300e+10 2.887500e+10 6.003400e+10 NaN NaN NaN NaN 1.550170e+11 1.802400e+10 4.324700e+10 -2.584600e+10 2.632392e+09
116420 JNJ.US 2020-06-30 2020-07-24 USD 2.707000e+09 NaN 3.940000e+09 NaN 3.626000e+09 4.993000e+09 1.177900e+10 5.711000e+09 -5.000000e+06 3.990000e+09 NaN 45000000.0 314000000.0 19000000.0 -26000000.0 NaN 67000000.0 NaN 314000000.0 1.833600e+10 7.839000e+09 6.557000e+09 -8.500000e+07 NaN 3.626000e+09 3.626000e+09 NaN 2020-07-24 USD 1.583800e+11 4.741300e+10 NaN 2.688000e+09 9.540200e+10 6.297800e+10 5.532000e+09 ... 3.677200e+10 5.332000e+09 5.332000e+09 NaN -1.553300e+10 1.759800e+10 4.589200e+10 NaN -1.832500e+10 7.961000e+09 1.464500e+10 2.506200e+10 9.424000e+09 3.144000e+10 NaN NaN NaN NaN NaN 3.120000e+09 NaN 1.138980e+11 -3.850700e+10 NaN 5.782000e+09 NaN 7.805000e+09 NaN 2.506200e+10 2.803600e+10 5.863000e+10 NaN NaN NaN NaN 1.583800e+11 1.913500e+10 4.405600e+10 -2.645800e+10 2.632377e+09
116235 JNJ.US 2020-09-30 2020-10-23 USD 2.840000e+09 NaN 4.401000e+09 NaN 3.554000e+09 5.431000e+09 1.411000e+10 4.445000e+09 -1.188000e+09 5.633000e+09 NaN 44000000.0 847000000.0 12000000.0 -32000000.0 NaN 206000000.0 NaN 847000000.0 2.108200e+10 8.477000e+09 6.972000e+09 -1.268000e+09 NaN 3.554000e+09 3.554000e+09 NaN 2020-10-23 USD 1.706930e+11 4.700600e+10 NaN 2.619000e+09 1.062200e+11 6.447300e+10 5.615000e+09 ... 3.884700e+10 5.078000e+09 5.078000e+09 NaN -1.493800e+10 1.785500e+10 5.757800e+10 NaN -1.684000e+10 1.181600e+10 1.457900e+10 3.268000e+10 9.599000e+09 3.376900e+10 NaN NaN NaN NaN NaN 3.120000e+09 NaN 1.148310e+11 -3.854000e+10 NaN 6.131000e+09 NaN 7.816000e+09 NaN 3.268000e+10 2.907800e+10 6.737300e+10 NaN NaN NaN NaN 1.706930e+11 3.078100e+10 4.516200e+10 -2.730700e+10 2.632167e+09
116135 JNJ.US 2020-12-31 2021-02-22 USD 4.032000e+09 NaN 1.647000e+09 NaN 1.738000e+09 6.457000e+09 1.466100e+10 1.734000e+09 -2.341000e+09 4.075000e+09 NaN 87000000.0 -91000000.0 13000000.0 -74000000.0 NaN 97000000.0 NaN -91000000.0 2.247500e+10 1.058600e+10 7.814000e+09 -2.414000e+09 NaN 1.738000e+09 1.738000e+09 NaN 2021-02-22 USD 1.748940e+11 5.340200e+10 NaN 3.132000e+09 1.116160e+11 6.327800e+10 7.214000e+09 ... 4.249300e+10 2.631000e+09 2.631000e+09 NaN -1.524200e+10 1.876600e+10 5.123700e+10 NaN -2.651700e+10 1.120000e+10 1.357600e+10 3.263500e+10 9.344000e+09 3.986200e+10 NaN NaN NaN NaN NaN 3.120000e+09 NaN 1.138900e+11 -3.849000e+10 NaN 6.562000e+09 NaN 8.534000e+09 NaN 3.263500e+10 2.927400e+10 6.912300e+10 NaN NaN NaN NaN 1.748940e+11 2.518500e+10 NaN NaN 2.632512e+09
then I have this dataframe(daily) prices:
ticker date open high low close adjusted_close volume
0 JNJ.US 2021-08-02 172.470 172.840 171.300 172.270 172.2700 3620659
1 JNJ.US 2021-07-30 172.540 172.980 171.840 172.200 172.2000 5346400
2 JNJ.US 2021-07-29 172.740 173.340 171.090 172.180 172.1800 4214100
3 JNJ.US 2021-07-28 172.730 173.380 172.080 172.180 172.1800 5750700
4 JNJ.US 2021-07-27 171.800 172.720 170.670 172.660 172.6600 7089300
I have daily data in the price data but I have quarterly data in the first data frame. I want to merge the dataframe in a way that all the prices between Jan-01-2020 and Mar-01-2020 are being merged with the correct row.
I'm not sure exactly how to do this. I thought of extracting the date to month-year but I still don't know how to merge based on the range of values?
Any suggestions would be welcomed, if I'm not clear please let me know and I can clarify.
If I understand correctly you could create common year and quarter columns for each DataFrame and do a merge on those columns. I did a left merge if you only want to match columns in the left dataset (daily data).
If this is not what you are looking for, could you please clarify with a sample input/output?
# importing pandas as pd
import pandas as pd
# Creating dummy data of daily values
dt = pd.Series(['2020-08-02', '2020-07-30', '2020-07-29',
'2020-07-28', '2020-07-27'])
# Convert the underlying data to datetime
dt = pd.to_datetime(dt)
dt_df = pd.DataFrame(dt, columns=['date'])
dt_df['quarter_1'] = dt_df['date'].dt.quarter
dt_df['year_1'] = dt_df['date'].dt.year
print(dt_df)
date quarter_1 year_1
0 2020-08-02 3 2020
1 2020-07-30 3 2020
2 2020-07-29 3 2020
3 2020-07-28 3 2020
4 2020-07-27 3 2020
# Creating dummy data of quarterly values
dt2 = pd.Series(['2019-12-31', '2020-03-31', '2020-06-30',
'2020-09-30', '2020-12-31'])
# Convert the underlying data to datetime
dt2 = pd.to_datetime(dt2)
dt2_df = pd.DataFrame(sr2, columns=['date2'])
dt2_df['quarter_2'] = dt2_df['date2'].dt.quarter
dt2_df['year_2'] = dt2_df['date2'].dt.year
print(dt2_df)
date_quarter quarter_2 year_2
0 2019-12-31 4 2019
1 2020-03-31 1 2020
2 2020-06-30 2 2020
3 2020-09-30 3 2020
4 2020-12-31 4 2020
Then you can just merge on how ever you want.
dt_df.merge(dt2_df, how='left', left_on=['quarter_1', 'year_1'], right_on=['quarter_2', 'year_2'] , validate="many_to_many")
OUTPUT:
date quarter_1 year_1 date_quarter quarter_2 year_2
0 2020-08-02 3 2020 2020-09-30 3 2020
1 2020-07-30 3 2020 2020-09-30 3 2020
2 2020-07-29 3 2020 2020-09-30 3 2020
3 2020-07-28 3 2020 2020-09-30 3 2020
4 2020-07-27 3 2020 2020-09-30 3 2020
Related
pandas dataframe rebuild based on cells
after a lot of testing I have ended with this df: Date 1 2 3 4 5 6 7 8 9 10 0 2019-01-02 59.92 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 2019-01-02 NaN 197.28 NaN NaN NaN NaN NaN NaN NaN NaN 0 2019-01-02 NaN NaN 96.59 NaN NaN NaN NaN NaN NaN NaN 0 2019-01-02 NaN NaN NaN 275.0 NaN NaN NaN NaN NaN NaN 0 2019-01-02 NaN NaN NaN NaN 209.94 NaN NaN NaN NaN NaN 0 2019-01-02 NaN NaN NaN NaN NaN 99.83 NaN NaN NaN NaN 0 2019-01-02 NaN NaN NaN NaN NaN NaN 257.89 NaN NaN NaN 0 2019-01-02 NaN NaN NaN NaN NaN NaN NaN 215.54 NaN NaN 0 2019-01-02 NaN NaN NaN NaN NaN NaN NaN NaN 187.06 NaN 0 2019-01-02 NaN NaN NaN NaN NaN NaN NaN NaN NaN 386.9 Would be nice any kind of trik to put all this values on the same row. Any idea? Thanks!!
Try via groupby() and sum(): df=df.groupby('Date').sum() output: Date 1 2 3 4 5 6 7 8 9 10 2019-01-02 59.92 197.28 96.59 275.0 209.94 99.83 257.89 215.54 187.06 386.9
An option with groupby first in case this would need to be performed for multiple different types where sum may not behave as expected: df = df.groupby('Date', as_index=False).first() Date 1 2 3 4 5 6 7 8 9 10 2019-01-02 59.92 197.28 96.59 275.0 209.94 99.83 257.89 215.54 187.06 386.9
Converting Annual and Monthly data to weekly in Python
My current data has variables recorded at different time interval and I want to have all variables cleaned and nicely aligned in a weekly format by either redistribution (weekly = monthly/4) or fill in the monthly value for each week (weekly = monthly). df=pd.DataFrame({ 'Date':['2020-06-03','2020-06-08','2020-06-15','2020-06-22','2020-06-29','2020-07-15','2020-08-15','2020-09-15','2020-10-14','2020-11-15','2020-12-15','2020-12-31','2021-01-15'], 'Date_Type':['Week_start_Mon','Week_start_Mon','Week_start_Mon','Week_start_Mon','Week_start_Mon','Monthly','Monthly','Monthly','Monthly','Monthly','Annual','Annual','Annual'], 'Var_Name':['A','A','A','A','B','C','C','C','E','F','G','G','H'], 'Var_Value': [150,50,0,200,800,5000,2000,6000.15000,2300,3300,650000,980000,1240000]}) Date Date_Type Var_Name Var_Value 0 2020-06-03 Week_start_Mon A 150.0 1 2020-06-08 Week_start_Mon A 50.0 2 2020-06-15 Week_start_Mon A 0.0 3 2020-06-22 Week_start_Mon A 200.0 4 2020-06-29 Week_start_Mon B 800.0 5 2020-07-15 Monthly C 5000.0 6 2020-08-15 Monthly C 2000.0 7 2020-09-15 Monthly C 6000.15 8 2020-10-14 Monthly E 2300.0 9 2020-11-15 Monthly F 3300.0 10 2020-12-15 Annual G 650000.0 11 2020-12-31 Annual G 980000.0 12 2021-01-15 Annual H 1240000.0 An ideal output will look like this: For variable C, the date range will be the start to the end dates of master df. All dates are aligned and set to start on Mondays of that week. The monthly variable value is evenly distributed to 4 weeks, and there would 0 for each week in June. Similarly annual variables will be distributed to 52 weeks. Date Date_Type Var_Name Var_Value 0 2020-06-01 Monthly C 0 1 2020-06-08 Monthly C 0 2 2020-06-15 Monthly C 0 3 2020-06-22 Monthly C 0 4 2020-06-29 Monthly C 0 5 2020-07-06 Monthly C 1250 6 2020-07-13 Monthly C 1250 7 2020-07-20 Monthly C 1250 8 2020-07-27 Monthly C 1250 9 2020-08-03 Monthly C 400 10 2020-08-10 Monthly C 400 11 2020-08-17 Monthly C 400 12 2020-08-24 Monthly C 400 13 2020-08-31 Monthly C 400 . . . to the end date For variable E, a percentage value that need to be filled for every week where it applies, the output would look like this: Date Date_Type Var_Name Var_Value 0 2020-06-01 Monthly E 0 1 2020-06-08 Monthly E 0 2 2020-06-15 Monthly E 0 3 2020-06-22 Monthly E 0 . . . 5 2020-09-28 Monthly E 0 6 2020-10-05 Monthly E 0.35 7 2020-10-12 Monthly E 0.35 8 2020-10-19 Monthly E 0.35 9 2020-10-26 Monthly E 0.35 10 2020-11-02 Monthly E 0 11 2020-11-09 Monthly E 0 12 2020-11-16 Monthly E 0 Ultimately my goal is to create a loop for treating this kind of data if weekly xxxxx if monthly xxxxx if annual xxxxx Please help!
This is a partial answer, I need some explanation. Set Date as index and realign all dates to Monday (I assume Date is already a datetime64 dtype) df = df.set_index("Date") df.index = df.index.map(lambda d: d - pd.tseries.offsets.Day(d.weekday())) >>> df Date_Type Var_Name Var_Value Date 2020-06-01 Weekly A 150.00 2020-06-08 Weekly A 50.00 2020-06-15 Weekly A 0.00 2020-06-22 Weekly A 200.00 2020-06-29 Weekly B 800.00 2020-07-13 Monthly C 5000.00 2020-08-10 Monthly C 2000.00 2020-09-14 Monthly C 6000.15 2020-10-12 Monthly E 2300.00 2020-11-09 Monthly F 3300.00 2020-12-14 Annual G 650000.00 2020-12-28 Annual G 980000.00 2021-01-11 Annual H 1240000.00 Create the index for each variable from 2020-06-01 to 2021-01-11 with a frequency of 7 days: dti = pd.date_range(df.index.min(), df.index.max(), freq="7D", name="Date") >>> dti DatetimeIndex(['2020-06-01', '2020-06-08', '2020-06-15', '2020-06-22', '2020-06-29', '2020-07-06', '2020-07-13', '2020-07-20', '2020-07-27', '2020-08-03', '2020-08-10', '2020-08-17', '2020-08-24', '2020-08-31', '2020-09-07', '2020-09-14', '2020-09-21', '2020-09-28', '2020-10-05', '2020-10-12', '2020-10-19', '2020-10-26', '2020-11-02', '2020-11-09', '2020-11-16', '2020-11-23', '2020-11-30', '2020-12-07', '2020-12-14', '2020-12-21', '2020-12-28', '2021-01-04', '2021-01-11'], dtype='datetime64[ns]', name='Date', freq='7D') Reindex your dataframe with the new index (pivot for a better display): df = df.pivot(columns=["Date_Type", "Var_Name"], values="Var_Value").reindex(dti) >>> df Date_Type Weekly Monthly Annual Var_Name A B C E F G H Date 2020-06-01 150.0 NaN NaN NaN NaN NaN NaN 2020-06-08 50.0 NaN NaN NaN NaN NaN NaN 2020-06-15 0.0 NaN NaN NaN NaN NaN NaN 2020-06-22 200.0 NaN NaN NaN NaN NaN NaN 2020-06-29 NaN 800.0 NaN NaN NaN NaN NaN 2020-07-06 NaN NaN NaN NaN NaN NaN NaN 2020-07-13 NaN NaN 5000.00 NaN NaN NaN NaN 2020-07-20 NaN NaN NaN NaN NaN NaN NaN 2020-07-27 NaN NaN NaN NaN NaN NaN NaN 2020-08-03 NaN NaN NaN NaN NaN NaN NaN 2020-08-10 NaN NaN 2000.00 NaN NaN NaN NaN 2020-08-17 NaN NaN NaN NaN NaN NaN NaN 2020-08-24 NaN NaN NaN NaN NaN NaN NaN 2020-08-31 NaN NaN NaN NaN NaN NaN NaN 2020-09-07 NaN NaN NaN NaN NaN NaN NaN 2020-09-14 NaN NaN 6000.15 NaN NaN NaN NaN 2020-09-21 NaN NaN NaN NaN NaN NaN NaN 2020-09-28 NaN NaN NaN NaN NaN NaN NaN 2020-10-05 NaN NaN NaN NaN NaN NaN NaN 2020-10-12 NaN NaN NaN 2300.0 NaN NaN NaN 2020-10-19 NaN NaN NaN NaN NaN NaN NaN 2020-10-26 NaN NaN NaN NaN NaN NaN NaN 2020-11-02 NaN NaN NaN NaN NaN NaN NaN 2020-11-09 NaN NaN NaN NaN 3300.0 NaN NaN 2020-11-16 NaN NaN NaN NaN NaN NaN NaN 2020-11-23 NaN NaN NaN NaN NaN NaN NaN 2020-11-30 NaN NaN NaN NaN NaN NaN NaN 2020-12-07 NaN NaN NaN NaN NaN NaN NaN 2020-12-14 NaN NaN NaN NaN NaN 650000.0 NaN 2020-12-21 NaN NaN NaN NaN NaN NaN NaN 2020-12-28 NaN NaN NaN NaN NaN 980000.0 NaN 2021-01-04 NaN NaN NaN NaN NaN NaN NaN 2021-01-11 NaN NaN NaN NaN NaN NaN 1240000.0 It only remains to fill in the missing values. It can be easy if I know how to deal with: if weekly xxxxx if monthly xxxxx if annual xxxxx
Creating new columns in Pandas dataframe reading csv file
I'm reading a simple csv file and creating a pandas dataframe. The csv file can have 1 row or 2 rows or 10 rows. If the csv file has 1 row then I want to create few columns and if it has <=2 rows, then create couple of new columns and if it has 10 rows, then I want to create 10 new columns. After reading the csv, my sample dataframe looks like below. df=pd.read_csv('/home/abc/myfile.csv',sep=',') print(df) id rate amount address lb ub msa 1 2.50 100 abcde 30 90 101 10 20 102 103 104 105 106 107 108 109 110 Case 1)If the dataframe has only 1 record then I want to create new columns 'new_id', 'new_rate' & 'new_address' and assign the values from 'id', 'rate' and 'address' columns coming from the dataframe Expected Output: id rate amount address lb ub msa new_id new_rate new_address 1 2.50 100 abcde 30 90 101 1 2.50 abcde Case 2)If the dataframe has <=2 records then I want to create for the 1st record 'lb_1', 'ub_1' with values 30 and 90 and for the 2nd record 'lb_2' & 'ub_2' with values 10 & 20 coming from the dataframe Expected Output: if there is only 1 row: id rate amount address lb ub msa lb_1 ub_1 1 2.50 100 abcde 30 90 101 30 90 if there are 2 rows: id rate amount address lb ub msa lb_1 ub_1 lb_2 ub_2 1 2.50 100 abcde 30 90 101 30 90 10 20 10 20 102 Case 3)If the dataframe has 10 records then I want to create 10 new columns ie, msa_1,msa_2....msa_10 and assign the respective values msa_1=101, msa_2=102.......msa_10=110 for each row coming from the dataframe Expected Output: id rate amount address lb ub msa msa_1 msa_2 msa_3 msa_4 msa_5 msa_6 msa_7 msa_8 msa_9 msa_10 1 2.50 100 abcde 30 90 101 101 102 103 104 105 106 107 108 109 110 10 20 102 103 104 105 106 107 108 109 110 I'm trying to write the code as below but for 2nd and 3rd case, I'm not sure how to do it and also if there is any better way to handle all the 3 cases, that would be great. Appreciate if anyone can show me the best way to get it done. Thanks in advance Case1: if df.shape[0]==1: df.loc[(df.shape[0]==1), "new_id"] = df["id"] df.loc[(df.shape[0]==1),"new_rate"]= df["rate"] df.loc[(df.shape[0]==1),"new_address"]= df["address"] Case2: if df.shape[0]<=2: for i in 1 to len(df.index) df.loc[df['lb_i']]=db['lb'] df.loc[df['ub_i']]=df['ub'] Case3: if df.shape[0]<=10: for i in 1 to len(df.index) df.loc[df['msa_i']]=df['msa']
for case 2 and case 3, you can do something like this - Case 2- # case 2 df= pd.read_csv('test.txt') lb_dict = { f'lb_{i}': value for i,value in enumerate(df['lb'].to_list(),start=1)} lb_df = pd.DataFrame.from_dict(lb_dict, orient='index').transpose() ub_dict = { f'ub_{i}': value for i,value in enumerate(df['ub'].to_list(),start=1)} ub_df = pd.DataFrame.from_dict(ub_dict, orient='index').transpose() final_df = pd.concat([df,lb_df,ub_df],axis =1) print(final_df) output- id rate amount address lb ub msa lb_1 lb_2 ub_1 ub_2 0 1.0 2.5 100.0 abcde 30 90 101 30.0 10.0 90.0 20.0 1 NaN NaN NaN NaN 10 20 102 NaN NaN NaN NaN For case 3 - # case 3 df= pd.read_csv('test.txt') msa_dict = { f'msa_{i}': value for i,value in enumerate(df['msa'].to_list(),start=1)} msa_df = pd.DataFrame.from_dict(msa_dict, orient='index').transpose() pd.concat([df,msa_df],axis =1) Output - id rate amount address lb ub msa msa_1 msa_2 msa_3 msa_4 msa_5 msa_6 msa_7 msa_8 msa_9 msa_10 0 1.0 2.5 100.0 abcde 30.0 90.0 101 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 1 NaN NaN NaN NaN 10.0 20.0 102 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN NaN NaN 103 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3 NaN NaN NaN NaN NaN NaN 104 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN 105 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 5 NaN NaN NaN NaN NaN NaN 106 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 6 NaN NaN NaN NaN NaN NaN 107 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 7 NaN NaN NaN NaN NaN NaN 108 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 8 NaN NaN NaN NaN NaN NaN 109 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 9 NaN NaN NaN NaN NaN NaN 110 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Solution - I've just created a dictionary from the required column and then I concatenated it with the original dataframe column-wise.
How to remove periods of time in a dataframe?
I have this df: CODE YEAR MONTH DAY TMAX TMIN PP BAD PERIOD 1 BAD PERIOD 2 9984 000130 1991 1 1 32.6 23.4 0.0 1991 1998 9985 000130 1991 1 2 31.2 22.4 0.0 NaN NaN 9986 000130 1991 1 3 32.0 NaN 0.0 NaN NaN 9987 000130 1991 1 4 32.2 23.0 0.0 NaN NaN 9988 000130 1991 1 5 30.5 22.0 0.0 NaN NaN ... ... ... ... ... ... ... 20118 000130 2018 9 30 31.8 21.2 NaN NaN NaN 30028 000132 1991 1 1 35.2 NaN 0.0 2005 2010 30029 000132 1991 1 2 34.6 NaN 0.0 NaN NaN 30030 000132 1991 1 3 35.8 NaN 0.0 NaN NaN 30031 000132 1991 1 4 34.8 NaN 0.0 NaN NaN ... ... ... ... ... ... ... 50027 000132 2019 10 5 36.5 NaN 13.1 NaN NaN 50028 000133 1991 1 1 36.2 NaN 0.0 1991 2010 50029 000133 1991 1 2 36.6 NaN 0.0 NaN NaN 50030 000133 1991 1 3 36.8 NaN 5.0 NaN NaN 50031 000133 1991 1 4 36.8 NaN 0.0 NaN NaN ... ... ... ... ... ... ... 54456 000133 2019 10 5 36.5 NaN 12.1 NaN NaN I want to change the values of the columns TMAX TMIN and PP to NaN, only of the periods specified in Bad Period 1 and Bad period 2 AND ONLY IN THEIR RESPECTIVE CODE. For example if I have Bad Period 1 equal to 1991 and Bad period 2 equal to 1998 I want all the values of TMAX, TMIN and PP that have code 000130 have NaN values since 1991 (bad period 1) to 1998 (bad period 2). I have 371 unique CODES in CODE column so i might use df.groupby("CODE"). Expected result after the change: CODE YEAR MONTH DAY TMAX TMIN PP BAD PERIOD 1 BAD PERIOD 2 9984 000130 1991 1 1 NaN NaN NaN 1991 1998 9985 000130 1991 1 2 NaN NaN NaN NaN NaN 9986 000130 1991 1 3 NaN NaN NaN NaN NaN 9987 000130 1991 1 4 NaN NaN NaN NaN NaN 9988 000130 1991 1 5 NaN NaN NaN NaN NaN ... ... ... ... ... ... ... 20118 000130 2018 9 30 31.8 21.2 NaN NaN NaN 30028 000132 1991 1 1 35.2 NaN 0.0 2005 2010 30029 000132 1991 1 2 34.6 NaN 0.0 NaN NaN 30030 000132 1991 1 3 35.8 NaN 0.0 NaN NaN 30031 000132 1991 1 4 34.8 NaN 0.0 NaN NaN ... ... ... ... ... ... ... 50027 000132 2019 10 5 36.5 NaN 13.1 NaN NaN 50028 000133 1991 1 1 NaN NaN NaN 1991 2010 50029 000133 1991 1 2 NaN NaN NaN NaN NaN 50030 000133 1991 1 3 NaN NaN NaN NaN NaN 50031 000133 1991 1 4 NaN NaN NaN NaN NaN ... ... ... ... ... ... ... 54456 000133 2019 10 5 36.5 NaN 12.1 NaN NaN
you can propagate the values in your bad columns with ffill, if the non nan values are always at the first row per group of CODE and your data is ordered per CODE. If not, with groupby.transform and first. Then use mask to replace by nan where the YEAR is between your two bad columns once filled with the wanted value. df_ = df[['BAD_1', 'BAD_2']].ffill() #or more flexible df_ = df.groupby("CODE")[['BAD_1', 'BAD_2']].transform('first') cols = ['TMAX', 'TMIN', 'PP'] df[cols] = df[cols].mask(df['YEAR'].ge(df_['BAD_1']) & df['YEAR'].le(df_['BAD_2'])) print(df) CODE YEAR MONTH DAY TMAX TMIN PP BAD_1 BAD_2 9984 130 1991 1 1 NaN NaN NaN 1991.0 1998.0 9985 130 1991 1 2 NaN NaN NaN NaN NaN 9986 130 1991 1 3 NaN NaN NaN NaN NaN 9987 130 1991 1 4 NaN NaN NaN NaN NaN 9988 130 1991 1 5 NaN NaN NaN NaN NaN 20118 130 2018 9 30 31.8 21.2 NaN NaN NaN 30028 132 1991 1 1 35.2 NaN 0.0 2005.0 2010.0 30029 132 1991 1 2 34.6 NaN 0.0 NaN NaN 30030 132 1991 1 3 35.8 NaN 0.0 NaN NaN 30031 132 1991 1 4 34.8 NaN 0.0 NaN NaN 50027 132 2019 10 5 36.5 NaN 13.1 NaN NaN 50028 133 1991 1 1 NaN NaN NaN 1991.0 2010.0 50029 133 1991 1 2 NaN NaN NaN NaN NaN 50030 133 1991 1 3 NaN NaN NaN NaN NaN 50031 133 1991 1 4 NaN NaN NaN NaN NaN 54456 133 2019 10 5 36.5 NaN 12.1 NaN NaN
In Python, how can I update multiple rows in a DataFrame with a Series?
I have a dataframe as below. a b c d 2010-07-23 NaN NaN NaN NaN 2010-07-26 NaN NaN NaN NaN 2010-07-27 NaN NaN NaN NaN 2010-07-28 NaN NaN NaN NaN 2010-07-29 NaN NaN NaN NaN 2010-07-30 NaN NaN NaN NaN 2010-08-02 NaN NaN NaN NaN 2010-08-03 NaN NaN NaN NaN 2010-08-04 NaN NaN NaN NaN 2010-08-05 NaN NaN NaN NaN And I have a series as below. 2010-07-23 a 1 b 2 c 3 d 4 I want to update the DataFrame with the series as below. How can I do? a b c d 2010-07-23 NaN NaN NaN NaN 2010-07-26 1 2 3 4 2010-07-27 1 2 3 4 2010-07-28 1 2 3 4 2010-07-29 NaN NaN NaN NaN 2010-07-30 NaN NaN NaN NaN 2010-08-02 NaN NaN NaN NaN 2010-08-03 NaN NaN NaN NaN 2010-08-04 NaN NaN NaN NaN 2010-08-05 NaN NaN NaN NaN Thank you very much for the help in advance.
If there is one column instead Series in s add DataFrame.squeeze with concat by length of date range, last pass to DataFrame.update: r = pd.date_range('2010-07-26','2010-07-28') df.update(pd.concat([s.squeeze()] * len(r), axis=1, keys=r).T) print (df) a b c d 2010-07-23 NaN NaN NaN NaN 2010-07-26 1.0 2.0 3.0 4.0 2010-07-27 1.0 2.0 3.0 4.0 2010-07-28 1.0 2.0 3.0 4.0 2010-07-29 NaN NaN NaN NaN 2010-07-30 NaN NaN NaN NaN 2010-08-02 NaN NaN NaN NaN 2010-08-03 NaN NaN NaN NaN 2010-08-04 NaN NaN NaN NaN 2010-08-05 NaN NaN NaN NaN Or you can use np.broadcast_to for repeat Series: r = pd.date_range('2010-07-26','2010-07-28') df1 = pd.DataFrame(np.broadcast_to(s.squeeze().values, (len(r),len(s))), index=r, columns=s.index) print (df1) a b c d 2010-07-26 1 2 3 4 2010-07-27 1 2 3 4 2010-07-28 1 2 3 4 df.update(df1) print (df) a b c d 2010-07-23 NaN NaN NaN NaN 2010-07-26 1.0 2.0 3.0 4.0 2010-07-27 1.0 2.0 3.0 4.0 2010-07-28 1.0 2.0 3.0 4.0 2010-07-29 NaN NaN NaN NaN 2010-07-30 NaN NaN NaN NaN 2010-08-02 NaN NaN NaN NaN 2010-08-03 NaN NaN NaN NaN 2010-08-04 NaN NaN NaN NaN 2010-08-05 NaN NaN NaN NaN