Create a dataframe whose first column is a text.
import pandas as pd
values = {'dates': ['2019','2020','2021'],
'price': [11,12,13]
}
df = pd.DataFrame(values, columns = ['dates','price'])
Check the dtypes:
df.dtypes
dates object
price int64
dtype: object
Convert type in the column dates to type dates.
df['dates'] = pd.to_datetime(df['dates'], format='%Y')
df
dates price
0 2019-01-01 11
1 2020-01-01 12
2 2021-01-01 13
I want to convert the type in dates column to date and the dates in the following format----contains only year number:
dates price
0 2019 11
1 2020 12
2 2021 13
How can achieve the target?
If you choose to have the datetime format for your columns, it is likely to benefit from it. What you see in the column ("2019-01-01") is a representation of the datetime object. The realquestion here is, why do you need to have a datetime object?
Actually, I don't care about datetime type:
Use a string ('2019'), or preferentially an integer (2019) which will enable you to perform sorting, calculations, etc.
I need the datetime type but I really want to see only the year:
Use style to format your column while retaining the underlying type:
df.style.format({'dates': lambda t: t.strftime('%Y')})
This will allow you to keep the type while having a clean visual format
Related
This CSV has dates in ISO 8601 time.
0 2014-01-01T00:00:00.000
1 2014-01-01T00:46:43.000
2 2014-01-01T01:33:26.001
I want to select the rows up until January 2. I'm not sure how to do this. I thought including
parse_dates=True
would allow me to refer to the date/time values directly like this:
sat0 = sat0[sat0['epoch']<2014-01-02T00:00:00.000]
but it's not working.
You can use pd.to_datetime() in converting the target date string column by its appropriate format. In this case, you can use '%Y-%m-%dT%H:%M:%S.%f' as the date format.
Here's the implementation in your case:
import pandas as pd
sat0 = pd.DataFrame({
'epoch': [
'2014-01-01T00:00:00.000',
'2014-01-01T00:46:43.000',
'2014-03-01T01:33:26.001',
]})
date_fmt = '%Y-%m-%dT%H:%M:%S.%f'
sat0['epoch'] = pd.to_datetime(sat0['epoch'], format=date_fmt)
sat0 = sat0[sat0['epoch'] < '2014-01-02T00:00:00.000']
Which outputs
epoch
0 2014-01-01 00:00:00
1 2014-01-01 00:46:43
I am confused by the number of data type conversions and seemingly very different solutions to this, none of which I can get to work.
What is the best way to convert a pandas datetime column (datetime64[ns] eg 2017-01-01 03:15:00) to another column in the same pandas dataframe, converted to julian day eg 2458971.8234259?
Many thanks
Create DatetimeIndex and convert to julian dates:
df = pd.DataFrame({'dates':['2017-01-01 03:15:00','2017-01-01 03:15:00']})
df['dates'] = pd.to_datetime(df['dates'])
df['jul1'] = pd.DatetimeIndex(df['dates']).to_julian_date()
#if need remove times
df['jul2'] = pd.DatetimeIndex(df['dates']).floor('d').to_julian_date()
print (df)
dates jul1 jul2
0 2017-01-01 03:15:00 2.457755e+06 2457754.5
1 2017-01-01 03:15:00 2.457755e+06 2457754.5
Because:
df['jul'] = df['dates'].dt.to_julian_date()
AttributeError: 'DatetimeProperties' object has no attribute 'to_julian_date'
I am getting date data in string format in pandas like 10-Oct,11-Oct but i want to make it date data type like this format 2019-10-10,2019-10-11
is there any easy way available in pandas?
Use to_datetime with added year and parameter format:
df = pd.DataFrame({'date':['10-Oct', '11-Oct']})
df['date'] = pd.to_datetime(df['date'] + '-2019', format='%d-%b-%Y')
print (df)
date
0 2019-10-10
1 2019-10-11
Cannot covert 'YYYY-MM' string to YYYY-MM datetime using datetime64 for data in pandas DataFrame.
np.datetime64 works to convert date string(s) of 'YYYY-MM' to datetime when stored in a scalar or array, but not when same data is accessed via a DateFrame.
What I want to do is convert a column dates (format: YYYY-MM) to datetime data (with or without adding another column).
csv file data:
month, volume
2019-01, 100
2019-02, 110
Sample Code:
import pandas as pd
import numpy as np
df=pd.read_csv (r'file location')
df["date"]=df["month"].apply(np.datetime64)
# Input (month): 2013-01
# Expected output (date): 2013-01
# Actual output (date): 2013-01-01
So, the datetime64 changes YYYY-MM to YYYY_MM-01
(Also, YYYY is converted to YYYY-01-01)
Perhaps you're looking for pd.Period:
In [11]: df.date.apply(pd.Period, freq='M')
Out[11]:
0 2019-01
1 2019-02
Name: date, dtype: object
Similarly, but without the apply:
In [12]: pd.to_datetime(df.date).dt.to_period(freq='M')
Out[12]:
0 2019-01
1 2019-02
Name: date, dtype: object
How do I convert a string in this format to a Pandas timestamp?
00:55:02:285
hours:minutes:seconds:milliseconds
I have a dataframe already with several columns in this format.
Pandas don't seem to recognize this format as a timestamp when I use any of the conversion functions, e.g.. to_datetime()
Many Thanks.
I think you need parameter format in to_datetime:
df = pd.DataFrame({'times':['00:55:02:285','00:55:02:285']})
print (df)
times
0 00:55:02:285
1 00:55:02:285
print (pd.to_datetime(df.times, format='%H:%M:%S:%f'))
0 1900-01-01 00:55:02.285
1 1900-01-01 00:55:02.285
Name: times, dtype: datetime64[ns]